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Abstract—Buffering architectures and policies for their ef-
ficient management constitute one of the core ingredients of
a network architecture. However, despite strong incentives to
experiment with, and deploy, new policies, the opportunities for
alterating anything beyond minor elements of such policies are
limited. In this work we introduce a new specification language,
OpenQueue, that allows users to specify entire buffering archi-
tectures and policies conveniently through several comparators
and simple functions. We show examples of buffer management
policies in OpenQueue and empirically demonstrate its direct
impact on performance in various settings.

I. INTRODUCTION

Buffering architectures define how input and output ports
of a network element are connected [16]. Their design and
management directly impact performance and cost of each net-
work element. Traditional network management only allows to
deploy a predefined set of buffer management policies whose
parameters can be adapted to specific network conditions.
Incorporating new management policies requires complex con-
trol/data plane code and even hardware changes. Objectives
beyond fairness [3] and additional traffic properties [21], [8],
[10] lead to new challenges in the implementation and per-
formance for switching architectures. Unfortunately, current
developments in software-defined networking mostly eschew
these challenges and concentrate on flexible and efficient
representations of packet classifiers (e.g., OpenFlow [26])
which do not really capture buffer management. This calls for
novel well-defined abstractions that enable buffer management
policies to be deployed on real network elements at runtime.

Design of such abstractions is hard, as they must satisfy pos-
sibly conflicting requirements: (1) EXPRESSIVITY: expressible
policies should cover a large majority of existing and future
deployment scenarios; (2) SIMPLICITY: policies for different
objectives should be expressible concisely with a limited set
of basic primitives and should not impose hardware choices;
(3) PERFORMANCE: implementations of policies should be
efficient; (4) DYNAMISM: one should be able to specify new
policies at run-time with no code changes or (re-)deployments.

II. DESIGN OVERVIEW

To specify an adequate language for software-defined buffer
management, we need to identify primitive entities, their
properties, and a logic to manipulate these primitives. The
choice of primitives dictates SIMPLICITY and EXPRESSIV-
ITY. Abstractions of ordered sets of conditions and actions

governing the handling of individual incoming packets as in
OpenFlow can be too complex and inefficient for a language
for buffer management.

We present OpenQueue, which has two main types of
objects: ports and queues assigned to ports. Each queue has an
admission control policy, deciding which packets are admitted
or dropped [14], [30]; each port, a scheduling policy, selecting
a queue whose HOL packet will be processed next [11], [25];
the HOL packet in a queue is defined by a processing policy.
In some cases, e.g., shared memory switches [2], [12], [13],
several queues share the same buffer space, and admission
control can routinely query the state of several queues; e.g.,
the LQD policy under congestion drops packets from the
longest queue [2]. Thus, OpenQueue deals with buffers and
admission control policy to resolve congestion at the buffer
level. Management policies for multi-level buffering archi-
tectures can be implemented in a centralized or distributed
manner, synchronously (e.g., finding a matching between
input and output ports) [27], [20] or asynchronously, like
packet scheduling in a buffered crossbar switch [7], [19], [20].
Specific implementations are beyond the scope of OpenQueue.

In summary, to define a buffering architecture and its
management in OpenQueue one needs to create instances of
ports, queues, and buffers, and specify relations among them:
admission control, processing, and scheduling policies.

A central primitive in our language is the queue. How
complex should the queue abstraction and implementation
be to achieve EXPRESSIVITY? In contrast to [28], which
explores universal scheduling policies that can satisfy multiple
objectives instead of having a flexible interface to define new
buffer management policies, we argue in the following for
separating admission, processing, and scheduling policies, and
supporting multiple (as well as single) queues, through some
novel fundamental results. Consider first a single queue (SQ)
buffering architecture of size B, uniformly sized packets with
individual values, and the objective of maximizing the total
transmitted value (weighted throughput). Usually, online buffer
management policies are evaluated by means of competitive
analysis [5], where an online policy is compared with an
offline optimal algorithm. Traditionally, queues implement
First-In-First-Out (FIFO) processing orders; can we find an
optimal online algorithm in this case?

Theorem 1. There is no deterministic online optimal al-
gorithm OPT for the SQ architecture, weighted throughput
objective, and FIFO processing.978-1-5090-6501-1/17/$31.00 c©2017 IEEE



Proof. Suppose such OPT exists. Consider an arrival of two
packets with values 1 and 2, in that order. In the first timeslot,
OPT has to either process or discard the first packet, 1. If it
discards 1, there are no more arrivals, and OPT transmits value
1 instead of 3. If OPT accepts 1, on the second timeslot there
arrive B packets of value 2 each, and OPT transmits value
2B + 1 instead of 2B + 2 it would have if it dropped 1.

Consider a policy PQ1 that processes most valuable packets
first and pushes out least valuable in case of congestion, with
no regard for FIFO order; it is clearly an online policy.

Theorem 2. PQ1 is better than any online deterministic policy
FIFO1 with FIFO processing.

Proof. For packets with unit processing time, PQ1 drops no
more packets than any other online algorithm (all greedy
algorithms are congested at the same time). PQ1 transmits the
most valuable packets and drops the least valuable, so it is no
worse than FIFO1. To show that on some inputs PQ1 is strictly
better than FIFO1, consider two arriving packets with values
1 and 2, in that order. PQ1 transmits 2. If FIFO1 discards 1,
it will transmit less than PQ1 if there are no future arrivals.
If FIFO1 accepts and transmits the unit-valued packet, on the
next timeslot B packets of value 2 arrive, and PQ1 transmits
total value 2(B + 1); FIFO1, only 2B + 1.

PQ1 is optimal for packets with values and weighted
throughput, regardless of arrival patterns. But its processing
order may be infeasible for some existing network elements
designed with FIFO in mind. This example motivates abstract-
ing/modifying processing order and admission control to have
push-outs. Consider next a multiple queue (MQ) architecture
with the same buffer size as SQ but with each queue dedicated
to packets with the same value with FIFO processing (several
queues can have the same value). This simplifies processing
and moves complexity to scheduling. Now the algorithm that
pushes out the least valuable packet and schedules the most
valuable transmits the same total value as PQ1.

Corollary 1. There exists an online deterministic algorithm
for MQ with FIFO at every queue that is better than any
deterministic online FIFO1.

This motivates multiple queues, which in turn demands for
a scheduling policy to choose between queues. Our design
choices are independent of specific objectives and packet
characteristics. Consider again MQ with m queues, with
any processing order allowed and admission control at every
queue. As before, to handle bursty traffic we assume that
queues share a buffer of size B [9]. In this case MQ has
an additional level of flexibility for scheduling (in addition to
admission control and processing), but for the same buffer size
B they are equally expressive.

Theorem 3. For any deterministic (or probabilistic) MQ
policy ALG, there exists an SQ policy that for any input
sequence transmits exactly the same set of packets (or a
random set of packets with the same distribution) as ALG.

Proof. ALG’s decisions depend only on the internal buffer
state and random bits. Therefore, we can recreate the process-
ing order in SQ, and this computed processing order can be
used as a priority function in SQ. Basically, the SQ policy
emulates ALG’s behaviour exactly and chooses the packet to
process according to MQ’s decisions, recalculating priorities
on every arrival. In the stochastic case, in each specific case
policies may diverge due to randomness, but as long as the
probabilities of SQ decisions are the same as ALG’s for the
same buffer state, the resulting distributions coincide.

Theorem 3 shows that in theory, SQ is as expressive as
MQ for any objective and any combination of packet char-
acteristics, both with deterministic policies and probabilistic
ones. So do we really need multiple queues on a single
output port (assuming we have no physical constraints such
as memory access bandwidth)? In fact, Sivaraman et al. [34]
recently proposed to express policies with a single priority
queue and a single calendar queue. However, even though both
architectures are equally expressive, additional constraints and
parameters such as the time complexity of operations may
arise that can make one buffering architecture preferable.

Theorem 4. In the worst case, MQ architecture with m queues
has time complexity of operations at least O(m/ logB) times
better than SQ simulating the same order.

Proof. To show the worst-case bound, we consider a specific
example where multiple queues are hard to simulate efficiently.
Suppose that every arriving packet has an associated queue
number that corresponds to a flow identifier (but no other
characteristics), each queue has to preserve FIFO ordering,
and the policy objective is to ensure fairness between the
queues, i.e., the multiple queue policy is Longest-Queue-First
(LQF). Note that arrivals for MQ cost O(logm) to choose
the queue and O(logB) to add to the queue implemented
as a priority queue in our architecture; updates in a FIFO
queue with identical packets might cost O(1) but here we have
sacrificed some efficiency for the generality of our scheme.

The lower bound stems from the fact that by adding one
or two packets we can completely reorder the single queue
that emulates LQF.For a specific example, consider m queues
and B > m2; at the first burst m packets arrive for every
queue, say pi,1, . . . , pi,m to queue i. SQ now has interleaved
packets: p1,1p2,1 . . . pm,1p1,2 . . . pm,2p3,1 . . . pm,m. After the
first timeslot, p1,1 has been processed and left the buffer,
and two more packets arrive in queue 1, p1,m+1 and p1,m+2.
Now all packets from queue 1 have to be reordered to
move forward in the single queue; the SQ order now has to
become p1,2p2,1 . . . pm,1p1,3p2,2 . . . pm,2p3,1 . . . pm,mp1,m+2,
which takes at least m operations even if we assume O(1)
operations in SQ. After the next timeslot, all queues again have
the same number of packets, and the sequence can be repeated;
note that the buffers are never congested in this example.

Based on the above observations, OpenQueue allows at-
taching multiple queues to the same port that share or do
not share the same buffer; naturally, this allows for single



queues as a special case. But how to adequately express
policies? Buffer management policies are generally concerned
with boundary conditions (e.g., upon admission a packet
with smallest value can be dropped). Hence, priority queues
arise as a natural choice for implementing actions related
to user-defined priorities (e.g., in FIFO processing order, a
packet with smallest arrival time is chosen next). The priority
criteria do not change at runtime (e.g., a queue’s ordering
cannot change from FIFO to LIFO). Thus, each admission,
processing, and scheduling policy in OpenQueue maintains
its priority queue data structure whose behavior is defined by
a simple comparator – a Boolean function comparing two
objects of same type via arithmetic/Boolean operators and
accesses to packet and object attributes. In addition, to specify
when a queue or buffer should be considered congested, we
introduce simple Boolean conditions.

III. OPENQUEUE SPECIFICATION LANGUAGE

Next we present the abstractions provided by OpenQueue,
aiming to reconcile SIMPLICITY and EXPRESSIVITY while
keeping PERFORMANCE in mind (cf. Sec. I). We begin with
some common abstractions used to declare the primitives
manipulated by OpenQueue.

A. Comparators

The core data structure for the expression of buffering
architectures is the priority queue. To express queues with
different priorities, while abstracting actual implementations,
many data structures in OpenQueue are parameterized by a
priority relation that determines the ordering of elements in
a queue. To that end, we introduce the notion of a compara-
tor, a Boolean binary predicate (over different types). Since
comparators are used internally by OpenQueue to implement
the queues, the comparison operation has to be efficiently
computable (ideally at the hardware level). To achieve efficient
computation with comparators, OpenQueue imposes certain
syntactic restrictions on their definition. The syntax below
captures the main restrictions.

x formal variables
n numeric constants
e ::= n | x.f | e⊕ e arithmetic expressions
b ::= e < e | b ? b predicates
c ::= comp name(x, x) = b comparator def.

Comparator declarations require providing a name
comp name, and take two arguments. The type of the
arguments varies depending on the priority being defined.
For instance for queues in OpenQueue, which hold packets,
a packet comparator has to be defined. The fourth production
of the grammar contains predicates, which are the Boolean
expressions b defining the comparison function. Aside from
the standard arithmetic expressions (we generically denote by
⊕ the standard arithmetic operators), the first-order Boolean
operators (denoted with the symbol ?) and arithmetic
relations (denoted with <), we allow the inspection of the
fields of the arguments using the standard dot notation

x.f , where f is assumed to be a field of the parameter x.
It is assumed here that field access operations require a
small constant number of memory accesses (generally one).
Importantly, no function or procedure calls are allowed in
comparators.

B. Boundary Conditions

Data structures manipulated by OpenQueue can behave
differently depending on whether the network entity is op-
erating in normal state, or in congested state. For example,
when a queue or a buffer becomes saturated, the user could
specify that certain packets should be dropped to achieve
graceful degradation. We allow the user to specify conditions
under which a data structure should be considered congested.
Again, we use a restricted language to express these boundary
conditions. Unlike comparators, the predicates of boundary
conditions are unary since they consider a single entity at any
time.

pf ::= weightAdm | weightSched modifiables
ac ::= drop(P ) actions

| modify(pf := e) | mark | notify | ac · ac
cl ::= (b, ac) | (b, ac) · cl condition cases
cd ::= cond name(x) = cl declarations

This syntax shares the definitions of predicates and decla-
rations with comparators seen before. Importantly, boundary
conditions can be a sequence of cases (each case separated
with a dot above). This is represented by the cl meta-variable
representing a list of pairs, whose first component contains a
predicate and second component defines an action represented
by the meta-variable ac.1 For the time being, we focus on
the drop(P ) action which indicates that packets have to be
dropped from the queue with probability P if the matching
predicate evaluates to true. Actions modify(pf := e), mark,
and notify will be discussed later. Moreover, we allow
actions to be sequenced, although generally only one action
is used in conditions. Condition cases enable the expression
of different response scenarios according to different types
of congestion. For example, under severe congestion a more
aggressive drop policy can be put in place by increasing the
probability of dropping a packet. It is best if the conditions
are mutually exclusive; in the current version of OpenQueue
only actions of the first matching condition (in lexicographic
order) will be triggered.

In the sequel we present the different entities comprising
OpenQueue in detail. For each entity we provide its properties;
some are primitives of the domain (e.g., packet size), and
others have to be set by the programmer. For each property
we indicate in comments whether it is r read-only or rw
writable, and cons if it’s value is fixed during execution,
or dyn otherwise. For functions we provide the return type
(e.g., bool fun), and we denote comparators indicating their
input types (e.g., Packet comp.), and boundary conditions
indicating the actions that they allow (e.g., drop cond).

1The syntax presented here is simplified for presentation purposes.



Queue {
// user-specified at declaration
size // size in bytes [r, cons]
buffer // allocating buffer [r, cons]
// primitive properties
currSize // current size [r, dyn]
// admission -- user-specified at decl.
admPrio(p1, p2) // pushOut comparat.[bool fun]
congestion() // drop(P) condit. [drop cond]
postAdmAct() // [{mark,notify,modify} comp]
weightAdm // adm. priority [rw, dyn]
// processing -- user-specified at decl.
procPrio(p1, p2)// proc comparat.[Packet comp]
getHOL() // HOL packet [Packet fun]
// scheduling -- user-specified at decl.
weightSched // scheduling prio. [rw, dyn]
}

Buffer {
// primitive properties
currSize // current size [r, dyn]
getBestQueue() // on weightAdm [Queue fun]
getCurrQueue() // admitted one [Queue fun]
// user-specified at declaration
size // size [r, cons]
// admission -- user-specified at decl.
congestion() // drop(P) [drop cond]
queuePrio(q1, q2)// compare q-s [bool fun]
postAdmAct() //[{mark,notify,modify} cond]
}

Port {
// primitive properties
getBestQueue() // on weightSched [Queue fun]
getCurrQueue() // scheduled one [Queue fun]
// scheduling user-specified at decl.
schedPrio(q1, q2)// compare q-s [bool fun]
postSchedAct() //[{mark,notify,modify} cond]
}

Packet {
size // size in bytes [r, cons]
value // virtual value [r, cons]
processing // nb of cycles [r, dyn]
arrival // arrival time [r, cons]
slack // offset in time [r, cons]
queue // target queue id [r, cons]
flow // flow id [r, cons]
}

Listing 1. OpenQueue’s core programming interface at a glance: queue,
buffer, port, and packet primitives.

C. Queues

List. 1 shows the declaration of queues, the first ingredient
of the clearly defined core OpenQueue programming interface.
Standard property size is defined by the user at declaration
time, as well as buffer, the buffer that contains the queue
and is shared among several queues in the shared memory
case. The currSize property serves to query current size
and changes dynamically as the queue is updated. Abstractly,
a queue contains packets ordered according to user-defined
priorities for admission control and processing.

a) Admission Policy: The first policy concerns the admis-
sion of packets into the queue: admPrio(p1, p2) is a packet
comparator used in case of congestion to choose the packets
to be dropped from the queue. As an alternative, instead

of defining an admission policy we could simply drop the
least valuable packets according to procPrio priority that we
will describe shortly. However, as shown in Sec. IV, separate
priorities for admission and processing not only give more
EXPRESSIVITY but also improve PERFORMANCE. There are
several properties related to the admission policy. 1) The user-
defined congestion() boundary condition that shows when
a queue is virtually congested, and defines which/how packets
should be dropped (here we only consider the drop(P) ac-
tion). The single argument of boundary condition declarations
is implicitly instantiated to the queue being defined, hence
this is a queue boundary condition. We notice here that the
deterministic drop action corresponds to an action drop(1)
in the syntax presented before. Usually, congestion() is a
set of different buffer occupancies and drop probabilities [14].
In the example below we show a possible congestion policy
whereby packets start being dropped with a probability of .5 if
the current occupation of the queue is greater than 3/4 of the
total size of the queue but lower than 9/10; they are dropped
with a probability of .9 if the occupation excedes 9/10 but is
lower than 19/20; and they are always dropped otherwise.

congestion() = |
(currSize >= .95*size, drop(1) ) .|

(currSize >= .9*size, drop(.9) ) .|
(currSize >= .75*size, drop(.5))|

OpenQueue can push out already admitted packets. To use
the same implementation for push-out and non-push-out cases,
an admission control policy always virtually admits incoming
packets. In case of virtual congestion, admission control ran-
domly drops the least valuable packets until the congestion
disappears. 2) The optional function postAdmAct() is a
boundary condition like congestion(), except that it is
restricted to mark, notify, and modify(pf := e). These ac-
tions are intended to tell subsequent processing entities that the
packet is subject to special conditions. 3) Finally, the function
postAdmAct() can be used to implement explicit congestion
notifications [4] or backpressure; postAdmAct() can return
actions such as mark or notify. When bandwidth is allocated
not only with respect to packet attributes, queues maintain a
weightAdm variable that can be updated dynamically after
each scheduling, and the is what modify(pf := e) is for.

b) Processing Policy: The processing policy de-
fines the priorities of packets in the queue through
procPrio(p1, p2): a packet comparator defined as a func-
tion taking two abstract packets and returning true if p1 has
a higher processing priority than p2. We are only concerned
with the highest processing priority packet at any point. This
priority defines the most and least valuable packets in the
queue. Hence, the only way to access packets in the queue
ordered by procPrio is through the getHOL() primitive
which returns the HOL (i.e., packet with highest processing
priority as defined by procPrio); e.g., the user can set
procPrio(p1, p2) = (p1.arrival < p2.arrival)

to encode FIFO processing so calls to getHOL() return the
packet with oldest arrival time.



c) Scheduling Policy: This policy allows to specify static
bandwidth allocations among queues of the same port during
scheduling. In this case, the policy is defined in part in the
queue declaration, and in part in the port declarations. The
weightSched variable for each queue is updated by the
postSchedAct() function defined in ports (see below).

D. Buffers

A buffer is an optional entity, declared only when several
queues share buffer space (see List. 1). It manages a set of
queues assigned at creation; congestion(), postAdmAct(),
size, and currSize are similar to the respective queue
attributes. Under congestion, admission control on the buffer
level finds a queue whose packet should be dropped, and the
queue’s admission control policy determines which packet to
drop. To order queues for admission, the user specifies the
queuePrio comparator; e.g., to implement LQD one can use
queuePrio(q1, q2) = (q1.currSize < q2.currSize)

E. Ports

The interface for ports is presented in List. 1. A port
manages a set of queues assigned to it at its declaration.2

schedPrio(q1,q2) is a user-defined scheduling property
that defines which HOL packet is scheduled next (this packet
is accessed through getBestQueue()). For example, priority
based on packet values with several levels of strict priorities
is defined as
schedPrio(q1, q2) =

(q1.getHOL().value > q2.getHOL().value)

Finally, postSchedAct() is similar to postAdmAct() and
is used to define new services.

F. Packets

The notion of a packet is primitive, meaning that the user
cannot modify or extend packets; packet fields can be used to
implement policies. To be independent of traffic types and to
have a clear separation from the classification module (that can
be expressed in a different language), every incoming packet is
prepended with three mandatory parameters, arrival time, size
in bytes, and destination queue, and four optional parameters,
intrinsic value (with application-specific meaning), processing
requirement in virtual cycles, slack (maximal offset in time
from arrival to transmission), and flow (a traffic aggregation
that the packet belongs to). We assume these properties are
set by an external classification unit (e.g., OpenFlow [26], if
a virtual switch is defined with the finest possible resolution),
except for arrival (set by OpenQueue when a packet is
received) and size.

List. 1 depicts the Packet data structure. Intrinsic value and
processing requirements are used to define prioritization lev-
els [18]. Slack is a time bound used in management decisions
of latency-sensitive applications; e.g., if buffer occupancy
already exceeds the slack value of an incoming packet, the

2We leave the new operator used to create network objects in OpenQueue
implicit; its usage will be clear from examples in Sec. IV.
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Fig. 1. Packets with required processing. Left: single priority queue with
buffer of size B = 6; right: multiple separated queues with three queues
(k = 3) of size 2 each. Dashed lines enclose queues.

packet can be dropped during admission even if there is
available buffer space; see Sec. IV for specific examples.
We posit that all decisions of buffer management policies
(admission, processing, or scheduling) are based only on
specified packet parameters and internal state variables of a
buffering architecture (e.g., buffer occupancy).

IV. PUTTING OPENQUEUE TO WORK

In this section we provide various examples of buffer
management policies demonstrating EXPRESSIVITY, SIMPLIC-
ITY, as well as DYNAMISM of OpenQueue. In particular, we
demonstrate the impact of each one of the admission control,
processing, and scheduling policies on the desired objective.
In addition we provide backward references to analytic results
thus reconciling results from theory and systems efforts.

A. Impact of Admission Control

The modern network edge is required to perform tasks with
heterogeneous complexity: deep packet inspection, firewalling,
and intrusion detection. Hence, the way packets are processed
may significantly affect desired objectives. For example, in-
creasing per-packet processing time for some flows can trigger
congestion even for traffic with relatively modest burstiness.

Consider throughput maximization in a single queue buffer-
ing architecture of size B, where each unit-sized and unit-
valued packet is assigned the number of required processing
cycles, ranging from 1 to k (see Fig. 1(a)). Defining a
new admission control policy in OpenQueue requires only
one comparator (admission order upon congestion) and one
congestion condition (when an event of congestion occurs).
The processing policy is defined by one additional comparator
(defining in which order packets are processed). Note that ad-
mission and processing comparators actually can be different.
List. 2 shows the comparators and congestion conditions spec-
ified in OpenQueue used in the following examples.3 List. 3
shows the full specification of a SQ buffering architecture and
its optimal throughput policy.

Table I lists implementations for admPrio and procPrio

in this architecture and analytic competitiveness results for
various online policies versus the optimal offline OPT al-
gorithm [18], [22], [31]; OPT/ALG is the competitive ratio
between the throughput of an optimal offline (OPT) algorithm

3We use lambda and let constructs to make implicit variables explicit,
and to avoid repetition. These are simple syntactic forms that affect in no way
the EXPRESSIVITY or SIMPLICITY of OpenQueue.



admPrio procPrio OPT/ALG
fifo() fifo() O(k)
rsrpt() fifo() O(log k)
rsrpt() srpt() 1 (optimal)

TABLE I
SAMPLE OPENQUEUE POLICIES WITH ANALYTIC
RESULTS FOR SQ ARCHITECTURE; k – MAXIMAL

PROCESSING REQUIREMENT PER PACKET IN CYCLES.

init. weightSched postSchedAct schedPrio OPT/ALG
unused unused lqf() Ω(B

2
)

unused unused sqf() Ω(k)
unused unused maxqf() Ω(k)

qi.weightSched=i unused minqf() upper bound 2
qi.weightSched=i crrPostSchedAct() crr() Ω( k

ln k
)

qi.weightSched=i prrPostSchedAct() prr() Ω( 3k(k+2)
4k+16

)

TABLE II
SAMPLE POLICIES IN OPENQUEUE FOR MULTIPLE SEPARATED QUEUES ARCHITECTURE.

// priorities for admission and processing
fifo(p1, p2) = (p1.arrival < p2.arrival)
srpt(p1, p2) = (p1.processing < p2.processing)
rsrpt(p1, p2) = (p1.processing > p2.processing)
// congestion conds. considered.
// trigger when occupancy exceeds size.
defCongestion() =
lambda q, (q.currSize >= q.size, drop(1))

Listing 2. Example priorities and congestion conditions.

// buffering architecture specification
q1 = Queue(B);
out = Port(q1);
// admission control
q1.admPrio(p1, p2) = rsrpt(p1, p2);
q1.congestion = defCongestion(q1);
// processing policy
q1.admPrio(p1, p2) = srpt(p1, p2);

Listing 3. Single queue: optimal buffer management policy for throughput
optimization.

and an online algorithm (ALG). Each row represents a buffer
management policy for a single queue; e.g., the first row
shows a simple greedy algorithm that admits every incoming
packet if possible (see congestion()), and processes them in
fifo() order; it is O(k)-competitive for maximum processing
requirement k. In OpenQueue this becomes simply:

q1.admPrio = fifo;
q1.procPrio = fifo;

Changing fifo() admission order to rsrpt() significantly
improves performance and this version of the greedy policy
is already O(log (k))-competitive. With the third greedy algo-
rithm processing packets in srpt() order and admitting them
in rsrpt() order, we get an optimal algorithm for throughput
maximization regardless of traffic distribution [18]. Since here
a port manages only one queue, a scheduling policy is just an
implicit call to getHOL().

B. Impact of Scheduling

One alternative architecture for packets with heterogeneous
processing requirements is to allocate queues for packets with
the same processing requirement (Fig. 1(b)). The OpenQueue
code in List. 4 creates this buffering architecture, with k

separate queues of size B. In this case, advanced process-
ing and admission orders are not required as only packets
with same processing requirements are admitted to the same
queue. This change of buffering architecture is not for free

// create k queues each of size B
q1 = Queue(B); ...; qk = Queue(B);
out = Port(q1, ..., qk);
// fifo admission order
q1.admPrio = fifo; ...; qk.admPrio = fifo;
// fifo processing order
q1.procPrio = fifo; ...; qk.procPrio = fifo;
// congestion condition
q1.congestion = defCongestion(q1); ...;
qk.congestion = defCongestion(qk);

Listing 4. Multiple separated FIFO queues with a single output port
architecture.

because the buffer of these queues is not shareable. But even
here, the decision of which packet to process in order to
maximize throughput is non-trivial since it is unclear which
characteristic (i.e., buffer occupancy, required processing, or
a combination) is most relevant for throughput optimization.
The code in List. 5 presents six different scheduling priorities
and postSchedAct actions when these actions are used.

Table II summarizes various online scheduling policies as
shown in [23], [31]. Observe that buffer occupancy is not a
good characteristic for throughput maximization: lqf() and
sqf() have bad competitive ratios, while a simple greedy
scheduling policy Min-Queue-First (MQF) that processes the
HOL packet from the non-empty queue with minimal required
processing (minqf()) is 2-competitive. This means that MQF
will have optimal throughput with a moderate speedup of
2 [23]. The other two policies that implement fairness with
per-cycle or per-packet resolution (CRR and PRR respectively)
perform relatively poorly; this demonstrates the fundamental
tradeoff between fairness and throughput. List. 6, for instance,
shows the CRR policy in OpenQueue.

C. Admission in Shared Buffers

Next we consider a shared memory switch architecture [9].
Listing 7 exemplies it in OpenQueue. As a sample policy we
declare an LQD policy, which works very well for throughput
maximization regardless of traffic patterns [2]. LQD greedily
accepts all packets and upon congestion drops a packet from
the currently longest queue. LQD is at least

√
2 and at most

2-competitive [2] versus an optimal offline policy; Listing 8
shows a complete definition of LQD.

D. Buffered Crossbar Switch

In this subsection, we show a sample multi-level buffering
architecture that demonstrates the applicability of OpenQueue
to specify management policies for switching fabrics. Unlike



// LQF: HOL packet from Longest-Queue-First
lqf(q1,q2) = (q1.currSize > q2.currSize);
// SQF: HOL packet from Shortest-Queue-First
sqf(q1,q2) = (q1.currSize < q2.currSize);
// MAXQF: HOL packet from queue that
// admits max processing
maxqf(q1,q2) = (q1.weightSched > q2.weightSched);
// MINQF: HOL packet from queue that admits
// min processing
minqf(q1,q2) = (q1.weightSched < q2.weightSched);
// CRR: Round-Robin with per cycle resolution
crr(q1,q2) = (q1.weightSched < q2.weightSched);
crrPostSchedAct() =
lambda port,
let q = port.getCurrQueue() in
(true, // condition
modify(q.weightSched := q.weightSched+k));

// PRR: Round-Robin with per packet resolution
prr(q1,q2) = (q1.weightSched < q2.weightSched);
prrPostSchedAct() =
lambda port,
(let q = port.getCurrQueue() in
(q.getHOL().processing == 0, // condition

modify(weightSched := weightSched+k*k)));

Listing 5. OpenQueue example of scheduling priorities and postSchedAct
actions for multiple separated queues.

// initializing schedWeight for CRR
q1.weightSched = 1; ...; qk.weightSched = k;
// postSchedAct updating schedWeight
out.postSchedAct = crrPostSchedAct(out);

Listing 6. CRR policy for multiple separated queues.

//Create n queues of size B
q1 = Queue(B); ...; qn = Queue(B);
//Create a shared buffer of size B
// and attach queues to it
b = Buffer(B, q1, ..., qn);
//Create an output port per queue
out1 = Port(q1); ...; outn = Port(qn);

Listing 7. Shared memory switch architecture.

//fifo admission order for queues
q1.admPrio = fifo; ...; qn.admPrio = fifo;
//fifo processing order
q1.procPrio = fifo; ...; qn.procPrio = fifo;
//congestion condition
q1.congestion = defCongestion(q1); ...;
qn.congestion = defCongestion(qn);

//buffer admission priority
queuePrio(q1, q2) = (q1.currSize<q2.currSize)
b.admPrio = queuePrio;
//congestion condition
defCongestionBuf() =
(b.currSize>=b.size, drop(1))

b.congestion = defCongestionBuf(b);

Listing 8. Longest-Queue-Drop (LQD) policy for shared memory switch.

an input-queued or combined-input-output-queued switch that
requires synchronous policies that usually compute matching
between input and output ports, adding an additional buffering
level at crosspoints allows to make this buffering architecture
asynchronous. Here, we consider a full-fledged version with
three buffering levels, where the first level implements virtual-
output queues (see Fig 2 and Listing 9). Listing 10 shows a
policy with longest-queue-first on input and output ports.

Fig. 2. Buffered-crossbar switch with three hierarchical levels.

E. Software-Defined Transports

Recently, new transports were introduced to optimize var-
ious objectives (throughput, average flow completion time,
etc.) [3], [15]. Some of them require complex processing or-
ders and support of push-out whose incorporation can require
complex code changes both on control and data planes. E.g.,
pFabric [3] prioritizes packets according to remaining flow
completion time (FCT) and during congestion pushes out least
valuable packets. In the original implementation of pFabric,
whenever dequeuing a packet a linear search over the entire
queue finds the first (top priority) packet from the flow in order
not to reorder packets in the same flow. Although [3] mentions
that evaluations do not encounter long queues sizes, on general
workloads this can become a bottleneck. Since pFabric was
evaluated in the discrete simulator YAPS [29], this linear
search has no operational effect. In reality the situation can be
different, and queue occupancy can significantly increase due
to this overhead. To avoid this, we can still push out the least
valuable packet during congestion but process packets in FIFO
order. Listing 11 shows this new transport in OpenQueue.

In the simulation environment, pFabric with FIFO clearly
cannot be better than pFabric that processes packets with
shortest remaining flow size first. But even here, normalized
FCT4 is close at least on the IMC10 workload (see Fig. 3).
Our goal here is not to introduce another transport but to show
how easily OpenQueue can introduce new transports at run-
time without any code changes on control and data planes.

V. FEASIBILITY OF OPENQUEUE

A fundamental building block in OpenQueue is the priority
queue data structure, where the order of elements is maintained
based on a user-defined priority. Our implementation keeps
a single copy of each packet and uses pointers to encode
priorities (see Fig. 4). Therefore, the performance of Open-
Queue on a given platform largely boils down to the efficiency
of underlying priority queue implementation. While priority
queue operations take O(logN) time in general, where N is
a queue size, there are restricted versions (e.g., for predefined
ranges of priorities) that support most operations in O(1) and

4Normalized flow completion time is the ratio of mean FCT(i) and mean
OPT(i), where OPT(i) is the completion time of flow i when it is the only
flow in the network, and FCT(i) is the actual completion time [15], [33].



// create 9 virtual-output queues
voq11 = Queue(B); ...; voq33 = Queue(B);
// attach voqs to input ports
in1 = Port(voq11, voq12, voq13);
in2 = Port(voq21, voq22, voq23);
in3 = Port(voq31, voq32, voq33);
// create 9 crosspoint queues of size 1
// usually small buffers are enough
cq11 = Queue(1); ...; cq33 = Queue(1)
// crosspoints as ports
cp11 = Port(cq11); ...; cp33 = Port(cq33);
// create 3 output queues of size B
oq1 = Queue(B); oq3 = Queue(B);
// attach oqs to output ports
out1 = Port(oq1); ...; out3 = Port(oq3);

Listing 9. Specification of 3x3 Buffered-crossbar switch.

// setting queues:
// admission order to fifo
voq11.admPrio = fifo; ...; voq33.admPrio = fifo;
cq11.admPrio = fifo; ...; cq33.admPrio = fifo;
oq1.admPrio = fifo; ...; oq3.admPrio = fifo;
// processing order to fifo
voq11.proPrio = fifo; ...; voq33.proPrio = fifo;
cq11.proPrio = fifo; ...; cq33.proPrio = fifo;
oq1.proPrio = fifo; ...; oq3.proPrio = fifo;
// congestion condition
voq11.congestion = defCongestion(); ...;
cq11.congestion = defCongestion(); ...;
oq1.congestion = defCongestion(); ...;
// LQF: HOL pkt. from Longest-Queue-First
lqf(q1, q2) = (q1.currSize > q2.currSize);
in1.schedPrio = lqf; in2.sched.Prio = lqf;
out1.schedPrio = lqf; out2.schedPrio = lqf;

Listing 10. Longest-Queue-First on input and output ports.

// buffering architecture specification
q1 = Queue(B);
out = Port(q1);
// admission control
q1.admPrio(p1, p2) = (p1.value > p2.value);
q1.congestion = defCongestion(q1);
// processing policy: fifo()
q1.admPrio(p1, p2) = fifo(p1, p2);

Listing 11. pFabric with FIFO processing.

can be efficiently implemented even in hardware [17], [34],
further increasing OpenQueue’s appeal. To guarantee a con-
stant number of insert/remove and lookup operations during
admission or scheduling of a packet (i.e., to avoid rebuilding
the priority queue), OpenQueue’s user-defined expressions for
priorities are immutable. The complexity of OpenQueue is
hence reduced to translating user-defined settings to a target
system that implements a virtual buffering architecture.

A. OpenQueue in the Linux Kernel

We implemented OpenQueue [1] in the Traffic Control (TC)
layer of the Linux kernel. To that end, we have extended
the Linux command tc to attach instances of OpenQueue
Queuing Discipline (as a qdisc5) to a network interface.

5qdisc is a part of Linux Traffic Control used to shape traffic on an interface;
it uses dequeue for outgoing packets and enqueue for incoming ones.

Our qdisc is implemented as a Linux kernel module, which
can be loaded into the kernel dynamically. A OpenQueue
kernel module contains C language constructs correspond to
OpenQueue policy elements. OpenQueue module name is
given as a parameter to the tc command. Fig. 5 illustrates
how OpenQueue policy modules are generated. The input of
our preprocessor is an OpenQueue file containing the desired
architecture for the interface. The preprocessor generates the
corresponding C code, and we compile this file into a loadable
kernel module to be loaded with the tc command dynamically
(cf. the insmod command). This allows to load new policies
seamlessly, without disrupting currently executing policies on
other interfaces. The admission policy is evaluated in the
enqueue method; if a packet is admitted, the corresponding
processing policy computes its rank according to processing
order. Similarly, the scheduling policy is evaluated in dequeue

to find the index of the queue that the next HOL packet is
taken from. This interaction between qdisc and predefined
functions is shown on Fig. 6. As a priority queue data structure
we use B-Trees and RB-trees that keep pointers to packets
(Fig. 4). The operational cost of packet insertions and deletions
is O(log N), where N is number of admitted packets.

B. OpenQueue Code Generation for Linux Kernel

Given the abstract nature of OpenQueue syntax and seman-
tic, one can generate high-level language code for any target
runtime environment. We developed an OpenQueue language
parser and code generation toolset for the Linux kernel. A
sample policy file in Listing 12 has three main sections. First,
imports at the top specify C header files that define function
signatures, including all possible C routines that can be used
as function pointers for dynamically defined queue/port opera-
tions. These functions’ signatures are validated for the format
of each operation and mundane sanity checks: argument types,
duplicate function names, missing semicolons, etc. The next
section defines queues and their attributes. The last section
defines the port and its attributes. These three sections define
a complete OpenQueue policy. Queue/port operation attributes
are not limited to precompiled C routines but also support a
limited set of inline functions for improved usability. The code
can be compiled into a loadable Linux kernel module attached
to a network interface using Linux tc command.

C. Priority Queue and Performance

To explore the performance overhead introduced by priority
queues (implemented as B-trees or RB-trees) in OpenQueue,
we used priorities based on arrival time to compare it with
the base-line qdisc implementation implemented as a doubly
linked list. We used a testbed with a 3-node line topology to
measure the performance overhead of our packet prioritization
logic. The middle node runs Open vSwitch (OVS) with
modified data plane (Linux kernel) and acts as a pass-through
switch. We vary the number of parallel traffic generators on
the first node and measure average queue length (i.e., number
of packets in the default queue) and maximal queue size on the
third receiver node for three qdiscs: baseline FIFO, FIFO with



pfabric phost fastpass fifo pfabric

0.2 0.4 0.6 0.8

2.5

3

N
or

m
al

iz
ed

FC
T

0.2 0.4 0.6 0.8

1

2

3

0.2 0.4 0.6 0.8

2

3

4

Fig. 3. Overall average normalized flow completion time for the three workloads with various loads as in [15].

Fig. 4. OpenQueue priority queues in Linux kernel.

Fig. 5. From OpenQueue language to Linux kernel module.

B-tree, and RB-tree prioritization in OpenQueue, reporting
the average value of 50 runs with 95% confidence interval.
Fig. 7(a-b) shows the average queue lengths and maximal
queue lengths for the three qdiscs; in all cases, average queue
length increases with the number of UDP clients. In FIFO
with 16 clients, the most congested case, regular FIFO has
an average queue length 247.8 vs. 251.1 packets for FIFO
with prioritization, a mere 1.3% degradation. We also varied
MTU sizes in the same 3-node line topology with 4 parallel
UDP generators, which is enough to observe queue build-
ups without dropping packets in the pass-though switch. We
measured average and maximal queue lengths of the three
qdiscs by varying MTU sizes from 1

16 of the default MTU size
to its default size (1500 bytes). Fig. 7(c) shows that for both
qdiscs average queue length decreases as MTU size increases;
FIFO with prioritization has about 1% overhead, both on
average and in maximal values: for MTU size of 1500

16 bytes the
averages are 501.6 vs. 506.7 packets. This demonstrates that
packet prioritization incurs negligible performance overhead.

VI. RELATED WORK

Languages such as P4 [6] are very successful in representing
packet classifiers, but they are less suited to express buffer
management policies. Our work was inspired by [34] that
introduces a set of primitives to define admission control poli-
cies. Recently, Sivaraman et al. [34], [35] expressed policies by
one priority and one calendar queue, still leaving the language
specification as future work. Mittal et al. attempt to build a
universal packet scheduling scheme [28]. In contrast to these

Fig. 6. Use of function calls inside the kernel module during packet
enqueue and dequeue.

import "include/routine/routines.h"
// Create queues with packets of size 128 and 1024
Queue q1 = Queue(128);
Queue q2 = Queue(1024);
// Attributes of q1
q1.admPrio = my_adm_prio;
q1.congestion = my_congestion_condition;
q1.congAction = drop_tail;
q1.procPrio = my_pro_prio;
// Attributes of q2
// TOS field as admission priority
q2.admPrio = inline{Packet.TOS};
// Queue is congested if its length is 1024 packets
q2.congestion = inline{Queue.length == 1024};
// Drop packets with 95% prob. when congested
q2.congAction = drop_tail(0.95);
q2.procPrio = my_pro_prio;
// Create port
Port myPort = Port(q1, q2);
// Define port attributes
myPort.queueSelect = select_admission_queue;
myPort.schedPrio = my_schd_prio;

Listing 12. Sample policy file.

approaches, OpenQueue considers a composition of admission
control, processing, and scheduling policies to optimize chosen
objectives on user-defined buffering architectures. Some pre-
liminary thoughts leading to the design of OpenQueue have
been presented in a short paper [24]. Nikolenko et al. [32]
considered network simplifications preserving routing capa-
bilities. Defining buffer-management policies on simplified
virtual networks is an interesting further research direction.

VII. CONCLUSIONS

We have proposed a concise yet expressive language to
define buffer management policies at runtime; new buffer
management policies do not require control/data-plane code
changes. We believe that OpenQueue can enable and accel-
erate innovation in buffering architectures and management,
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Fig. 7. Queue length as a function of (a) number of UDP clients with default MTU size; (b) with half default MTU size; (c) fraction of default MTU size.

similar to programming abstractions that exploit OpenFlow
for services with sophisticated classification modules.
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[22] K. Kogan, A. López-Ortiz, S. I. Nikolenko, and A. Sirotkin. A taxonomy
of semi-fifo policies. In IPCCC, pages 295–304, 2012.
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