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Abstract

The use of mobile, wearable, and Internet of Things (IoT) technologies fosters unique

opportunities for designing novel intelligent positive computing services that address

various health and well-being issues such as stress and depression. As positive com-

puting research is often cross-disciplinary, it is difficult to acquire holistic perspectives

on the design, implementation, and evaluation of intelligent positive computing sys-

tems with mobile, wearable, and IoT technologies. To bridge this gap, we propose a

conceptual framework and review the key components to provide guidelines for intel-

ligent positive computing systems research. We also present several practical service

scenarios and provide useful insights on opportunities and challenges. By critically

reflecting on the literature and scenarios, we suggest several research directions on the

core topics in intelligent positive computing systems research. In addition, we discuss

concerns and challenges such as technology dependence, abandonment, side effects,

privacy, and ethical issues.
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1. Introduction

Recent advances of mobile, wearable, and Internet-of-Things (IoT) technologies

have greatly changed computing paradigms. Earlier paradigms based on desktop envi-

ronments were more focused on making computing services usable. Nowadays, how-

ever, the focus has shifted towards making computing services persuasive. For ex-

ample, wearable activity trackers not only quantify users’ physical activities, but also

motivate users by visualizing data for self-reflection and enable users to share data

for social facilitation. Moreover, voice-based artificial intelligence (AI) assistants can

recognize user moods and recommend personalized play lists based on those moods.

This paradigm shift has also sparked a positive computing movement toward the

design of information technologies that promote personal well-being and help to ful-

fill human potentialities, beyond improving efficiency and effectiveness in knowledge

work [1]. Furthermore, recent advances of mobile, wearable, and IoT technologies

foster novel opportunities for designing and developing novel intelligent positive com-

puting services that address various health and well-being issues, such as mental and

physical health. The major benefits of intelligent positive computing services include

the facilitation of novel means of detecting human behaviors that might signal well-

being problems, delivering therapeutic interventions in a timely fashion, and track-

ing responses for assessing the effectiveness of the interventions. Positive computing

research requires cross-disciplinary collaboration among computing, design, human-

computer interaction (HCI), and psychology fields. Therefore, acquiring holistic per-

spectives on this research domain is very challenging. The goal of this work is to

bridge this gap by providing an integrative review of existing studies for researchers

and practitioners who strive to design, develop, and evaluate intelligent positive com-

puting systems using mobile, wearable, and IoT technologies.

Towards this goal, we propose a conceptual framework of intelligent positive com-

puting systems that leverage mobile, wearable, and IoT technologies. The core compo-
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nent of the framework is the collection of sensor data from mobile, wearable, and IoT

devices to extract basic context features, such as physical activities. This sensor data is

analyzed to detect behavioral markers of well-being problems, such as lack of physical

activity and depressive symptoms. After the marker detection, favorable moments for

delivering proper intervention content to the users are identified with a careful selection

of delivery device and modality. This core component includes a user feedback loop to

improve the accuracy of algorithms and accommodate user preferences. Furthermore,

the system design component provides the evidence-based guidelines, which are estab-

lished based on behavior principles and systematic evaluations. The system evaluation

component considers the effectiveness of the systems for human behavioral change,

while determining how and why the system is used for design improvement.

With the consideration of the proposed conceptual framework, we review the lit-

erature of six core areas that are critical for intelligent positive computing systems

research, namely (1) design methodologies, (2) mobile platform design, (3) behavior

marker detection, (4) opportune moment detection, (5) device and modality selection,

and (6) evaluation methodologies. As positive computing spans a wide range of disci-

plines, our goal is to provide an overview of the related studies and suggest practical

guidelines for intelligent positive computing research involving mobile, wearable, and

IoT technologies.

In addition, a set of positive computing service scenarios is proposed by using a

scenario-based design method [2]. The conceptualization of service scenarios provides

researchers and practitioners preliminary yet useful insights on possible opportunities

and challenges for positive computing system design and implementation. Our sce-

narios are targeted to college students as a focal lens for designing positive computing

systems as young adults are the early adopters of new information technologies. More-

over, many of them tend to be vulnerable to health and well-being problems, such as

depression and addiction, on account of their developmental dynamics and relative in-

dependence from social roles and expectations [3, 4, 5, 6]. We conclude this paper

by providing the research directions on the core topics in positive computing systems

research, specifically system design, platform design, behavioral markers, opportune

moments, device/modality selection, and evaluation. In addition, we discuss various
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concerns and challenges of positive computing systems that researchers and practition-

ers should consider such as dependence, abandonment, side effects, privacy, and ethical

issues.

2. Mobile, Wearable, and IoT Technologies for Intelligent Positive Computing

Intelligent positive computing leverages mobile, wearable, and IoT devices such as

smartphones, activity trackers, voice assistants, and smart sensors. These technologies

support refined sensing and tracking of a user’s status ranging from physiological sig-

nals, such as heart rates and skin temperature, to physical activities, social interactions,

and their interaction with everyday objects. In addition, IoT devices provide physical

actuation such as controlling light bulbs, door locks, and thermometers, as well as vir-

tual actuation such as emailing users of sensed events. It is also possible to collect

many kinds of sensor data through the web, such as weather and air quality, via open

Application Programming Interfaces (APIs), which are known as virtual sensors [7].

Smartphones are equipped with various sensors (e.g., GPS, motion sensors, com-

pass, ambient light, camera, and microphone). Mining sensor data facilitates an im-

proved understanding of user contexts and detection of various events of interests [8].

For example, smartphone sensing provides location tracking with GPS, activity track-

ing with motion sensors (accelerometers and gyroscopes), and social interaction track-

ing through audio sensing (or call/SMS log analysis). Similar sensing features are also

supported by wearable devices such as smart watches and activity trackers. For exam-

ple, Apple Watch 3 and Samsung Gear S3 include a built-in GPS, barometer, heart-rate

sensor, accelerometer, and gyroscope. A major advantage of wearable devices is their

support of sensing physiological signals, such as heart rate, electrocardiogram (ECG),

and skin temperature, which are useful for detecting stress and emotion [9]. Several

wrist-worn devices enable researchers to access raw data such as Empatica E4, Shim-

mer3, and Philips DTI-2—unlike popular wrist-worn devices, these devices provide

APIs for accessing raw data, but their cost is an order of magnitude greater. There

are also sensing devices that can be attached to the smartphones as in AliveCor’s Kar-

diaMobile ECG that allows users to track their heart conditions.
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IoT devices can be largely classified based on functionality. A popular trend is do-

mestic and office environments. Major functionalities in this area include IoT hubs,

voice assistants, lighting and switches, outlets, sensors (e.g., motion, temperature,

moisture/water), door locks, thermostats, and speakers. Most IoT devices are stan-

dalone products that are controllable through local networks or the Internet. For ex-

ample, users can wirelessly control connected door locks and thermostats through the

Internet. Several platforms, such as SmartThings [10] and Sen.se Mother [11], provide

the central hubs that wirelessly connect multiple sensing and actuation devices. Popu-

lar sensing mechanisms include motion and activity sensing, thereby enabling tracking

user location and activities, as well as user interactions with everyday objects. Sen.se

Mother [11] has motion tags called Motion Cookies that can be attached to any kinds

of trackable objects (e.g., pillbox, keys). When a user carries this sensor tag, it au-

tomatically tracks the user’s physical activities, such as step counting. There are also

standalone tags for sensing such as TI SensorTag and Cao Wireless Tag. In addition to

sensing, IoT devices with actuation features include smart bulbs, outlets, door locks,

thermostats, and speakers, which may be connected to the central hubs for integrated

control. Voice assistants include Amazon Echo and Google Home, which provide nat-

ural language support for information activities (e.g., Q&A) and device control (e.g.,

turning off the blubs). This kind of IoT device controlling is also supported by the IoT

hubs, such as SmartThings Hub.

3. Conceptual Framework for Intelligent Positive Computing Systems Research

The major benefits of using mobile, wearable, and IoT technologies for positive

computing are their novel means of measuring and tracking well-being problems and

delivering intervention methods. The large amount of personal big data collected from

these devices helps elucidate the user context. Thus, mining this big data provides new

approaches of measuring/tracking well-being problems. Furthermore, mobile, wear-

able, and IoT technologies enable intervention to be enacted in a timely fashion and

therapeutic responses to be tracked.

In Figure 1, we present our conceptual framework for intelligent positive com-
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Figure 1: Intelligent positive computing framework for delivering in-situ, intelligent, in-time, intimate, and

incorporated services (i.e., the so-called “five I’s” of intelligent positive computing)

puting. The top of the figure illustrates the design of a positive computing system

that aligns with guidelines for designing evidence-based persuasive systems. These

guidelines are established based on behavior principles (e.g., operant conditioning,

motivation) and systematic evaluations (e.g., long-term randomized field trials, user

experiences). A positive computing system is used as a strategy for behavior change.

Thus, the effectiveness for human behavior change must be properly evaluated. A well-

known approach is to use a randomized controlled trial (RCT), which randomly assigns

participants into experimental groups (e.g., control versus experimental group) without

revealing the assignment information. With the objective of gaining design knowledge

for better system design, human-computer interaction (HCI) researchers should addi-

tionally tailor evaluation procedures to understand how and why the system is to be

used by its target users.

Positive computing platforms collect sensor data from mobile, wearable, and IoT

devices, including virtual sensors from the web. The sensor data can be preprocessed
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to extract basic context features such as physical activities and semantic user locations.

Behavioral markers of well-being problems are then detected by mining sensor data

streams. For example, lack of physical activity and aggressive driving can be inferred

by processing motion sensor data. Unique behavioral patterns of a depressed individual

can be discovered via mining sensor data streams from multiple data sources, such as

app usage and mobility traces [12, 13, 14].

Once a behavior marker is detected, it is necessary to identify opportune moments

for interruption. For example, we can consider the points at which it is most appro-

priate to ask a user to perform certain activities that can help them to recover from a

depressed state. Afterwards, we then can select the device and modality for information

delivery. For an alert message delivery, for example, it might be desirable to consider

which device to choose (e.g., smartphones or smartwatches), and which output modal-

ity to employ (e.g., auditory or visual output). These three steps—detecting behavioral

markers and opportune moments, and selecting the device/modality—may include user

feedback loop for incremental learning. A user’s feedback can be employed to improve

the accuracy of the detection algorithms and provide the opportunity for accommodat-

ing the user’s preferences.

This conceptual framework provides in-situ, intelligent, in-time, intimate, and in-

corporating services—the so-called “five I’s” of intelligent positive computing—using

mobile, wearable, and IoT devices. In-situ sensing in a user’s daily life provides quan-

tified self and context data collection. Mining this personal big data enables intelligent

identification of problematic situations in time. An intervention can then be intimately

provided to the user by using always-on mobile, wearable, and IoT devices in a per-

sonalized fashion. In addition, incorporating a user’s feedback continuously improves

the service experience.

Figure 2 depicts an example service scenario of promoting active lifestyles by deliv-

ering a set of intervention methods, specifically addressing unproductive use of smart

media, a lack of physical activities, and stressful tasks. In the first stage, we collect

quantified self and contextual data from the users; this includes not only sensor data, but

also user self-reported data (e.g., level of stress, emotional state). Various behavioral

patterns that are related to well-being problems are monitored. In addition, data mining
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Figure 3: Key components of the proposed conceptual framework: (1) design, (2) platform design, (3) behav-

ior marker detection, (4) opportune moment detection, (5) device and modality selection, and (6) evaluation

can be used for uncovering a person’s unique behavioral patterns. Automatic detection

of behavioral markers and opportune moments enables context-sensitive, timely deliv-

ery of intervention content to the users.
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4. Literature Review of Key Components

We review the literature of the major components—design, technologies, evaluation—

in positive computing systems research. Given the fact that positive computing research

spans a wide range of disciplines, our goal is to provide an overview of the related stud-

ies and suggest guidelines for positive computing research with mobile, wearable, and

IoT technologies. The key components of intelligent positive computing systems are

illustrated in Figure 3.

4.1. Evidence-based Design for Positive Computing Systems

In the field of positive computing research, the target domain of human behavior

has expanded from a single simple behavior (e.g., walking, running, Internet use) to a

complex set of implicit behaviors (e.g., health, productivity, sustainability) [15, 16, 17,

18, 19]. Change in human behavior is a highly complex process and is affected by a

tremendous number of both internal and external factors and their combinations [20].

We categorize factors presented in the existing literature, such as the health belief

model [21], social cognitive theory [22], and theory of reasoned action [23], into five

major factors that influence the likelihood that an individual will change their behavior.

The first factor is perceived susceptibility. An individual must feel susceptible to a

negative condition with severe consequences. The second is perceived benefit, which is

one’s belief in the efficacy of behavioral change that outweighs the perceived barriers to

tangible and psychological costs of the change. Self-efficacy is one of the most impor-

tant factors influencing an individual’s behavioral change. That is, a subject must have

confidence in their own ability to take action under different circumstances. Incentives

involving physical outcomes, social outcomes, or even self-sanctions also play a key

role in leading behavior change. Moreover, it was found that perceptions of social

pressure (i.e., social reinforcement) prompt individuals to perform the target behav-

ior. Furthermore, these factors are continually interacting with each other, resulting in

satisfaction with one’s behavioral performance and maintenance of the behavior, or in

dissatisfaction and possible termination of the behavior. Thus, researchers of positive

computing systems must utilize these variables to understand a wide variety of human

behaviors and consider them for designing persuasive approaches.
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Meanwhile, there are many challenges remaining when designing effective persua-

sive systems. Prior research identified barriers to behavior change, including lack of

motivation, resistance to change, and/or compliance. Thus, recent efforts have been

made for those who suffer from psychological difficulties on account of the urgency of

their problems [24, 25, 26, 27]. Some interventions were found to be effective via sci-

entifically sound methods (e.g., cognitive behavior therapy), while others continue to be

used without validation by sound evidence (e.g., psychodynamics) [28, 29]. Regardless

of theoretical differences across these attempts, they all share the same component—

the primary agency for behavioral changes in human beings [30]. Furthermore, human

beings by nature are very flexible, sensitive, and responsive to the complexity of human

behaviors [31].

Now, every design of a technical device, system, and program that is relevant to

positive computing should consider various aspects of human behaviors which could

be translated into design components [32, 33, 34]. Literature in HCI has been shown to

heighten the awareness of design components, and many attempts to identify the criti-

cal design components have been made [35, 36, 37]. Researchers have suggested new

approaches to providing simple, accessible, scalable, and sustainable regimens that

meet user needs to promote positive behaviors [38]. Computational methods or inter-

ventions have been developed to promote physical and mental well-being [15, 39, 40,

38]. For instance, wearable technologies provide opportunities to monitor stress [41].

Some studies further suggest just-in-time interventions by analyzing a user’s state in-

situ [15, 42].

Although these interventions are found to be useful, research on them are domi-

nantly based on either the synthesis of expert opinion or the results of short-term user

studies, limiting its usefulness as a guide for designing evidence-based persuasive sys-

tems. To date, what is generally lacking in the literature, except in certain studies, is

this systematic approach to identifying design components based on behavior princi-

ples and evaluations. Nevertheless, a notable study led to the proposal of a health-

coaching system for stress reduction built upon successful behavioral approaches [38].

Incorporating behavior change theory, such as self-efficacy theory [22] and goal-setting

theory [43], researchers have attempted to tackle a paradox of compliance; users fail
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to persist with given health-promoting behaviors because goals are too easy or too dif-

ficult. To address this concern, they suggested a smartphone-based adaptive coaching

system that modifies goal difficulties based on a user’s previous performance to provide

more tailored and contextualized suggestions. In summary, system designers should

extract principles from a theoretical framework and translate them into key technical

features of the system as clearly illustrated in the behavioral intervention technology

model [44].

Based on the learning principles, behavior theory (BT) can provide guidelines for

the design of persuasive computing systems for behavior change. BT is one of the

theories that were developed to explain human behaviors and methods following BT

principles have been successfully used to modify human behaviors [45]. In BT, factors

affecting human behavior are categorized into two parts, consisting of personal factors

(e.g., personality, learning history) and environmental factors (e.g., settings, people,

and systems) [46, 47]. This framework of behavior theory provides a conceptual lens

on the design of persuasive computing systems because it provides guidance on the

focus to maximize human behavior change [48, 49]. It has been well documented that

one’s personality is a stable condition that is resistant to change [50, 51]. Learning the

history of a person is also the same; past experience cannot be modified [52]. How-

ever, environmental factors are malleable and can be modified [53, 54]. In addition,

operant conditioning, one of the primary learning principles that explains how people

learn what actions to take and not to take based on reward or punishment, provides a

classification system (e.g., antecedent-behavior-consequence) to analyze environmen-

tal factors (for more information, see Cooper et al. [55].)

In the field of HCI, positive computing devices, programs, and systems are the ma-

jor agency for behavior change in accordance with environmental factors. To maximize

change in human behavior, design components should be analyzed and classified ac-

cording to their functions that follow the principles of behavioral learning or operant

conditioning. Although the necessity of each specific environmental factor as a crit-

ical design component should be empirically tested, a few can be identified from the

analysis of design components commonly used in other research domains. For exam-

ple, as antecedents, which are factors influencing behaviors, we should consider plots
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(e.g., story, contents, narrative, goal setting, self-monitoring), sensation (e.g., graphics,

sounds, beauty), problem solving (e.g., challenge, intellectual demands), social inter-

action (e.g., social exchange, sharing ideas and products), diversity (e.g., change over

time, exploration), and balance across design components [56, 57, 58], when designing

a system. Ongoing efforts will follow the means of prioritizing or combining these

components to maximize the effects of each system.

More importantly, the reward system, which is the consequence of the operant con-

ditioning and the key mechanism of human behavior change, should be intensively

focused on and extensively analyzed. Various types of reward systems, such as perfor-

mance feedback, points, level system, and tangible rewards. [59, 34, 60, 61], have been

successfully used. In BT, a reward is conceptualized as a component that increases

the frequency of a behavior as a consequence of experiencing a certain stimulus [46].

Furthermore, the reward system is complex because it is influenced by type, timing,

amount, and contingency of the stimulus, as well as by the motivational level of the

person who receives the stimulus [55]. Only the careful consideration and combination

of these components can guarantee the best design for the positive computing persua-

sive interaction platform.

4.2. Platform Design

In this sub-section, we present the major building blocks of a general-purpose soft-

ware platform and then provide a detailed review of well-known software platforms.

4.2.1. Major Building Blocks

Recent advances in mobile technologies—smartphones with wirelessly connected

wearable and IoT devices—enable myriad applications that can help people better man-

age their health, wellness, and productivity. These applications usually require collec-

tion of fast-growing raw sensor data (e.g., from an accelerometer, gyroscope, lumi-

nance, GPS, and so on) in order to extract the user’s behavioral markers by processing

and analyzing the collected data and then identifiying appropriate moments for inter-

ventions to better achieve their objectives (i.e., persuasive interactions). To this end, de-

velopment of a general-purposed platform is highly necessary; however, the endeavor

12



Main scenarios
Productivity, Stress, Physical activity

Data source & Communication interfaces

Applications & Participant interface

Data processing & analysis

Data acquisition

Wearables IoT devices

Sampling

Basic functions

Participant’s interactions

Local device Cloud

Smartphones

Disconnection
handling

Plan & goal 
setting

Context
tracking

Remind/
reinforce

Self-
reflection

Intervention Self-report Visualization

Location Social context Physical activity Mood
Long-ranged data 

analysis
Social data analysis

ConnectRegistration
Time-ranged

queriesSubscription

Comm. 
InterfacesSensorsUser data Sensors

Comm. 
interfaces

Comm. 
interfacesSensors

Figure 4: General-purposed platform architecture: A layered approach

has various challenges. These challenges include concurrent wireless connections to

a wide variety of devices, handling of a large-volume raw sensor data influx, reliable

and flexible storage, quick and accurate sanity check of incoming data, efficient data

sharing between components, extensibility to a wide range of sensors, and effective

user interactions with the platform.

In Figure 4, we conceptualize the platform components with a layered architecture.

(1) Data source and communication interface includes sensor data (e.g., accelerome-

ters, gyroscopes, magnetometers, GPS, etc.) from smartphones and other wirelessly

connected devices, and communication interfaces deliver the collected data to smart-

phones or cloud for further processing. (2) Data acquisition includes implementa-

tion of an agent that performs basic functions (e.g., device registration, connection,

subscription, and time-ranged queries), sampling rate of raw sensor data, and connec-

tion failure handling. (3) Data processing and analysis implements deterministic algo-

rithms or machine learning methods for processing of raw sensor data to extract con-

13



textual features and behavioral markers. The processing and analysis can be performed

in-situ at a mobile device or it could be offloaded to the cloud. (4) Application and par-

ticipant interface includes intervention applications and participant’s interactions. The

application usually contains pipe-lined procedures (i.e., plan and goal setting, context

tracking, reminding/reinforcement, and self-reflection). The participant’s interactions

involve user interventions, user’s self-reporting to the platform, visualization of the

user’s daily (or longer) summary.

4.2.2. Review of Recent Platform Studies

Existing platforms can be broadly classified in two categories: vendor-specific and

vendor-agnostic software platforms. First, vendor-specific platforms are more akin

to data collection systems because they are solely developed by the vendors, such as

Fitbit, Garmin, and Xiaomi. These types of platforms typically provide specific appli-

cations to support vendor-specific devices and support cloud-based back-end storage.

For example, Fitbit trackers and Garmin wearables upload activity tracking data to a

smartphone and optionally to back-end storage to overcome the memory shortage of

wearables. However, such vendor-specific platforms do not allow accessing raw sensor

data and thus, extensibility is quite limited.

Second, vendor-agnostic software platforms aim to support a broad spectrum of

vendor agnostic devices and a rich suite of services. These software platforms can

further be divided into commercial and research platforms. Examples of commercial

software platforms include Apple HealthKit [62], CareKit [63], Google Fit [64], and

Microsoft HealthVault [65]. These types of platforms typically provide a rich suite

of services. For example, Google Fit supports a broad spectrum of wearable devices

to track health-related information such as steps, time, distance, burned calories, and

sleep. Apple’s ResearchKit and CareKit further provide an ecosystem for developers

to build apps that enable users to manage their well-being on a daily basis. Compared

to vendor specific ones, these provide an optimized in-situ storage engine (i.e., smart-

phone) and a broad spectrum of queries over the back-end cloud. However, these types

of platforms cannot fully support high-rate sensor data influx, data quality assessment,

behavioral marker extraction, context-triggered user data collection, intervention de-
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sign, self-report data collection, and privacy management.

In recent years, research communities made considerable efforts to build novel plat-

forms that can deal with such limitations. Research platforms often have diverse objec-

tives (e.g., time management, mood, stress, etc.) and procedures (i.e., behavioral mark-

ers extraction, intervention, reinforcement, etc.). Despite such diversity, they share the

similar design challenges and major building blocks of a general-purposed platform

as described in Figure 4. For example, ContextPhone [66] focuses on contextual in-

formation as an understandable resource for users. With the help of widgets, users

can control the sensor data collection. Ohmage [67] is a smartphone-to-web toolkit

designed to create and manage the experience of sampling-based data collection cam-

paigns in support of mobile health pilot studies. Moreover, it is accessible in multiple

platforms. Similarly, CenceMe [68] infers the physical-social context and shared infor-

mation through back-end server processing to match commonly shared social contexts

to raise social awareness. Momento [69] is integrated with a ContextToolkit server to

analyze audio segments to detect proximity of people. A middleware approach can

be adapted and extended to support extensibility. AWARENESS [70] focuses on pri-

vacy of users. The context in this platform is shared with previously trusted devices,

and a smartphone user is the sole controller of privacy aspects. However, this may

sacrifice the quality of context based on the extent to which the context is shared at a

given time. To cope with extensibility, OpendDataKit [71] adopts a middleware design

approach and allows developers to minimize their efforts on sensor-specific codes via

reusable sensor drivers (downloading new sensor capabilities from an application mar-

ket without any modifications) and provide the management of discovery, communica-

tion channels, and data buffers. AWARE [72] provides mobile data-logging tools, and

it supports external sensor plugins to collect and abstract sensor data for context-aware

service delivery. More recently, mCerebrum [73] significantly improves scalability of

storage for high-rate sensor data and further provides several fine-tuned features, such

as sensor duty-cycling, energy-optimized context inference with inference computation

as a shared service, and sensor data quality assessment [74].
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4.3. Behavioral Marker Detection

We present the concept of behavioral markers and illustrate the importance of this

concept by describing various applications. We then provide a detailed review of well-

known behavioral marker detection methods.

4.3.1. Defining Behavioral Markers

The concept of behavioral markers is closely related to that of the digital phenotype,

which includes a set of observable characteristics of an individual through mobile and

wearable devices such as activity trackers and smartphone loggers [75, 76, 77, 78].

A person’s digital phenotype may cover various data sources, ranging from passive

sensor data (e.g., self-trackers, smartphone logging) and social media use to active self-

reporting (e.g., mood, stress). Similar to genotyping, which aims to find associations

between genetic variants and disease (as in typical biomarkers), the goal of digital

phenotyping is to uncover mappings between digital phenotypic variants and diseases

of interests (e.g., depression). In this case, most of digital phenotype data are related to

an individual’s behaviors; thus, such digital phenotypic variants are called “behavioral

markers.”

Digital phenotyping provides major benefits to well-being care in terms of diagno-

sis, treatment, and management. Mobile and wearable devices can collect and analyze

an individual’s digital phenotype data in real time. This means that we can perform

“continuous and unobtrusive measurement and inference of health, behavior, and other

parameters” using mobile and wearable devices [77]. In other words, digital pheno-

typing helps to re-define the manifestation of well-being problems, provide alterna-

tive approaches for measuring such problems, deliver interventions in a timely fashion

(known as just-in-time delivery), track therapeutic responses of delivered interventions,

and enable proactive management of problems in well-being (e.g., remission/relapse

monitoring, risk prediction) [75, 77, 79]. In particular, automatic identification of well-

being problems is the key enabler of the just-in-time intervention [80]

Prior studies attempted to define behavioral markers based on digital phenotyping

techniques [76, 78, 77]. Harari et al. [76] proposed a behavioral model with three di-

mensions: social interaction, daily activities, and mobility patterns. Behavioral mark-
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ers in each dimension are further defined based on sensor data processing (e.g., duration

of social interaction). Likewise, Mohr et al. [78] proposed a hierarchical feature model

in which low-level sensor data are transformed into low-level features that constitute

high-level behavioral markers. As in the case of the work of Harari et al. [76], most

low-level features are human interpretable features such as location type, activity type,

movement intensity, and phone usage. Given that existing models are predominantly

based on human interpretable features, it is very natural to extend these models to in-

clude “contextual models.” Here, “context” means “any information that can be used

to characterize the situation of a person” [81]. As Schmidt et al. [82] defined, a context

describes a situation and the environment in which a device/user is situated by a set of

relevant features over several domains. For example, human factors may have feature

sets of a user, social environment, and tasks; the physical environment may have fea-

ture sets of conditions, infrastructures, and locations. However, recent studies tended

to extract various kinds of features for machine learning, and thus, pure contextual

meaning of extracted features may be weak in reality, such as the entropy of app usage.

Behavioral markers in prior studies can be classified as two types: direct behavioral

markers and inferred behavioral markers. Direct behavioral markers are the types of be-

havioral markers that are directly measurable using sensors based on prior knowledge

of well-being problems. For example, lack of physical activity and aggressive driving

can be directly measurable using motion sensors. However, in most cases, there is a

lack of prior knowledge on detailed manifestation of well-being problems. For exam-

ple, a person with depression may show different behaviors when the person falls into

the depressed state; however, we do not know what kinds of behaviors are related to the

depressed state. In this case, we can collect self-reported data and digital phenotype

data to find meaningful behavioral markers related to the depressed state. In addition,

we can use a standard diagnostic manual such as Diagnostic and Statistical Manual

of Mental Disorders (DSM-5) [83], which informs us of which behavioral features to

extract as Wang et al. did in their recent studies on depression tracking [84].
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4.3.2. Review of Recent Behavioral Marker Detection Studies

In the case of direct behavioral markers, motion sensors are mainly used to detect

various types of physical activities such as movement [85], sleeping [86], eating [87],

and agitation [88]. For example, SitCoach detects that a user is in a sedentary state if

the arithmetic difference between consecutive accelerometer samples is smaller than a

predetermined threshold [85]. Eating gestures can be recognized by applying machine

learning on wrist motion data measured from smartwatches [87].

Prior studies on inferred behavioral markers examined various well-being prob-

lems, such as depression [12, 13, 14], social anxiety [89], bipolar disorder [90], smart-

phone addiction [91], and schizophrenia [92].3 As a representative case, we review

how smartphone GPS traces can be used to automatically identify the depressed stage

of an individual [13]. First, Canzian and Musolesi [13] built a mobile app that was to

collect GPS traces as well as self-reported data about an individual’s depression level

using PHQ-8, an eight-item questionnaire with the sum of items denoting the level of

depression [93]. This app was distributed via Android Play Store. During the data col-

lection period, users answered the PHQ-8 questionnaire daily, and both self-reported

and mobility traces were transferred to the remote server for data analysis. For reliable

data analysis, the dataset was collected for two months. After data collection, GPS

traces were preprocessed to find a sequence of places visited. For any time interval,

various daily mobility features could be extracted such as places visited, place vari-

ety, distance travelled, and regularity of daily routines. Thus, for a given user, we can

prepare the vector for each day, i as follows: (PHQ score for day i, a set of mobility

metrics for day i). This dataset enables us to investigate what kinds of mobility features

are correlated to the PHQ scores. Furthermore, predictive analysis can be performed.

For example, multiple regression can be used to understand the predictive power of

various mobility metrics. If each day is labeled as a depressed or normal day based

on the PHQ score threshold, we can run classification algorithms such as support vec-

3Schizophrenia is a mental disorder characterized by abnormal social behavior and failure to understand

reality; thus, someone with this disorder may have difficulty in distinguishing between what is real and what

is imaginary.
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tor machine (SVM). Saeb et al.’s work [14] further considered both GPS traces and

smartphone usage and found that mobility and phone usage were significantly corre-

lated with depressive symptoms. Besides sensor data processing, many prior studies

alternatively analyzed social media data (e.g., Twitter, Facebook) to identify various

well-being problems such as suicidal ideation [94] and depressive states [12].

4.4. Opportune Moment Detection

We define the concept of opportune moments and highlight its importance through

examples. In addition, we present a review of recent studies on opportune moments.

4.4.1. Defining Opportune Moments

Positive computing is intended to help users change behaviors or attitudes. It is

thus imperative for the system to persuade its users to restrain undesirable actions and

promote their desirable actions. Timely delivery of intervention with mobile, wearable,

and IoT technologies requires that the system interrupt users to draw their attention

from their current task. Interruption of users can be achieved using various forms of

alert methods, including a visual, vibration, sound notification, or a combination of

these for information delivery. Typically, these interruptions occur when an event is

detected (e.g., behavioral marker detection) or it follows predetermined scheduling on

a regular basis. However, it is well known that off-task interruptions often result in

productivity loss, increased stress, and time pressure [95]. Thus, it is very important

to consider interruptibility, which is a user’s receptiveness to interruption or perceived

burden of interruption [96, 97, 98, 99].

Prior studies found that a task changing moment is most suitable for interruption

because that results in the lowest resumption lag and user annoyance [100]. In the

mobile environment, Ho and Intille [97] showed that an opportune moment for inter-

ruption should consider the patterns of various user activities such as physical activities

and social engagements. For accurate prediction, it is very important to carefully con-

sider a user’s contextual model, which can be built based on a user’s current location,

activities and interactions with other users, by using various built-in mobile sensors

(e.g., GPS, accelerometer, microphone, application contexts and Bluetooth signalling).
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Besides current contexts, we can also consider a user’s past context information; for

example, Choy et al. [101] showed that beyond immediate past, looking back on the

current day can significantly help detect opportune moments.

The first step towards automatic identification of opportune moments is to col-

lect sensor data and user feedback (or label) of interruption instances. We can use

simple context sensing algorithms for automatic detection (e.g., activity change de-

tection [102]), or apply machine learning methods by extracting various contextual

features [103, 101]. An explicit way of collecting user feedback is to ask users to la-

bel every instance (e.g., Likert scale rating), which is challenging and laborious [102].

Thus, it is important to selectively ask users to label instances as in active learning or

decision-theoretic modeling used in BusyBody [104]. Alternatively, we can use a pas-

sive way of labeling interruptible moments. For example, InterruptMe used a user’s

responsiveness to notification to judge whether a user is interruptible [103, 80].

4.4.2. Review of Recent Studies on Opportune Moments

Prior studies attempted to detect opportune moments in various contexts. “Let’s

FOCUS” is an app for helping students to self-regulate their smartphone use in class-

rooms [105]. This service automatically detects a context switching moment of arriv-

ing at a classroom with indoor localization and nudges a student to lock the phone for

self-regulation. In their user study, Park et al. [106] uncovered several social contexts

for interruption such as long silence and a user left alone, which can be automatically

identified using built-in mobile sensors.

BreakSense aims to promote physical activity of office workers [102] by nudging

users to engage in more physical activities when they start moving away from their

desks. The system automatically detects their movements by using motion sensors,

and then it sends a notification of asking them to take a short break challenge of indoor

walking. Indoor mobility can be monitored with Bluetooth beacons, and completion

of break challenges can be automatically checked. The field trial results revealed that

nudging users at the opportune moments and challenge-based gamification served as

major motives for active engagement.
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4.5. Device and Modality Selection

We explain the basic concepts of device and modality selection. We then provide a

detailed review of recent device and modality selection studies.

4.5.1. Introduction to Device and Modality Selection

We consider multi-device environments with mobile, wearable, and IoT devices

which typically have multiple input and output modalities. Here, a modality means

a single independent channel of sensory input or output between a computer and a

person. It is likely that devices have different form factors, and their modalities vary

widely (e.g., screen size, vibration patterns, actuation support). The primary effective-

ness of any kinds of ubiquitous-technology-based intervention is the production of a

successful delivery of the intervention to the users. In multi-device/modality scenarios,

it would be important to understand what the most effective mechanisms are for infor-

mation delivery. In addition, it is possible to learn about the user behaviors and their

preferences for more effective delivery.

Device and modality selection is critical in intervention delivery. It is closely re-

lated to the types of information (e.g., text, picture/video, and audio) and comprises

a required user interaction. Furthermore, there are several constraints to consider for

the device and modality: user preference, attention performance, device availability,

and acceptability. User preference means that users may have a preference in the de-

vice and modality selection. For example, a user may prefer to receive messages using

smartphones instead of smartwatches. Attention performance is related to an output

modality; for a given environment, it is the signal-to-noise ratio (or attention focus) of

a given device and modaility pair. For example, in a noisy environment, it is difficult

to perceive sound-based notifications. According to the multiple resource theory, it is

possible to perform tasks simultaneously as long as they differ in their type of resource

demand (e.g., visual and auditory), and incoming stimuli are filtered based on their

level of relevance [107]. Acceptability refers to the extent to which the device and

modality selection is personally or socially acceptable because information delivery

with such selection may cause a distraction or a disturbance. Thus, we can formulate

the device and modaility selection as follows: for a given intervention content (instruc-
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tion and visual aids) and availability/attention/preference/acceptability constraints, it

must be determined how we should render the content for a given set of devices and its

modalities.

Several studies investigated various aspects of device and modality selection. Re-

searchers examined notification awareness and accuracy by varying the types of output

modalities: visual, auditory, tactile, and olfactory outputs. For example, a user study

showed higher accuracy and user preference in visual and auditory outputs compared to

other modalities [108]. When multiple modalities were available (e.g., audio and visual

outputs), output modality-combinations could be more effective than single modality

use [109]. For example, in recall tests, study participants showed that spoken text

with pictures showed the highest recall performance. Various studies also reported on

availability, acceptability, and preference issues [109]. Shirazi and Henze [110] identi-

fied the priority of device preference over different content types (e.g., messenger for

smartphone, and calendar checking for smartwatches). Weber et al. [111] identified

device preferences based on screen size and availability. Jeong et al. [112] determined

that it is important to consider interaction availability (e.g., whether devices are nearby

or interactable) and social acceptability (e.g., whether it is okay to interact under the

given social circumstances). Automatic configuration of a mobile phone’s notification

modalities is closely related to our modality selection. For example, Sensay [113] is

a context-aware mobile phone in which, by performing context sensing, it can auto-

matically configure a phone’s output modality for notification delivery. For example,

during a meeting, it can change its notification mode to visual notification with LED

signals.

4.5.2. Review of Recent Device and Modality Selection Studies

We then review three case studies on device and modality selection: (1) user prefer-

ences of smartwatch wearing behaviors [112], (2) automatic configuration of the output

modality [113], and (3) the multi-device/modality combination [114]. In terms of wear-

able devices for intervention delivery, it is important to understand wearing behaviors.

Jeong et al. [112] collected a longitudinal activity tracking dataset of 50 Apple Watch

users. Participants showed the following patterns of diurnal usage: those who tended to
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wear during the work hours (58%), during active hours (38%), and on all days (12%).

For example, work hour wearers tended to remove their smartwatches after work (or

at home). For these kinds of people, it would be difficult to deliver content after work

hours using smartwatches. In contrast, all day wearers were likely to wear their de-

vices, even in bed, and a significant opportunity exists for anytime content delivery.

Smartwatch usage was preferred when users desired immediate responses or engaged

in multitasking. For example, a user desired receipt of a phone call while biking. How-

ever, its usage was nuanced in that, for some users, the capability of making immediate

responses may have been a major reason for them not wearing the smartwatch at home.

This case study clearly showed that carefully understanding wearing behaviors and user

preferences is crucial for effective intervention delivery.

Automatic configuration based on context awareness is the key enabler for in-

telligence device and modality selection. The context-aware mobile phone, Sensay,

modifies its ringer mode based on the user’s state and environment [113]. Specifi-

cally, it uses multiple sensory data (e.g., light, motion, sound) for context recognition

and it changes the output modality for notifications based on the user current state,

namely, uninterruptible, idle, active, or normal. Although the study in [113] focused

only on a single device, we can naturally extend this concept to multi-device envi-

ronments [115]. For a given context, we can rank which device and modality is the

most appropriate by considering the device availability, user preference, and attention

performance [110, 111, 112].

The availability of multiple personal devices and shared IoT devices engenders

novel opportunities for intervention. Lee et al. [114] studied how these devices, as inter-

active instrumental materials, can be used for behavioral changes by enabling context-

aware just-in-time intervention. In their sleep intervention studies, they found that

participants were able to configure multiple devices, such as smart plugs, smartphones,

and speakers for behavioral changes. For example, when a phone is not charged on

time, sad music will be played through a speaker. Since IoT devices are equipped with

various actuation features, combining multiple devices and context data has enabled the

design of novel intervention methods that can significantly improve the effectiveness

of content delivery.
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4.6. Evaluation of Positive Computing Systems

The primary goal of a positive computing system platform is behavior change. As a

strategy for behavior change, the effectiveness of platform should be proved [116, 117,

32]. Use of a mobile, wearable, or IoT device, or its embedded program without em-

pirical evidence is less acceptable in both business and real-life settings [60, 33]. The

most recommended experimental design to prove the effectiveness of an intervention

for human behavior is a randomized controlled trial (RCT) [61, 118]. For a study to

be classified as an RCT, a random assignment of participants to experimental groups

(e.g., control versus experimental group) and a double-blind design (e.g., a study in

which both the participants and experimenters do not know to which the group partic-

ipants belong) should be conducted. The RCT proves its effectiveness by statistically

testing the significance of the dependent variables (DVs) (e.g., changes of scores be-

fore and after the intervention) between the experimental and control groups, while

controlling extraneous variables (e.g., age differences, duration of device use) that may

affect the DVs [119, 120]. The RCT research design has been adopted as an evalu-

ation method for newly developed drugs, programs, devices, and systems in several

disciplines, including pharmacology, psychology, education, economy, and political

science [121, 122, 123, 124, 125, 126].

However, it appears that the RCT research design has not been widely applied to the

study of the effectiveness of computational interventions for health monitoring yet [33,

60, 61]. Recently, several studies reviewed RCTs to investigate the effectiveness of

computational interventions developed for health promoting behaviors [33, 60, 61].

Although works varied, depending on the topic, search period, and data selection crite-

ria, researchers were able to identify only a handful of RCTs. For example, a review of

studies exploring the effectiveness of using smartphone applications to promote phys-

ical activity concluded that 55% of studies used an RCT (11 studies out of 20) [32].

Other studies that explored web-based interventions for health enhancement found that

only 14% of studies (11 studies out of 83) used an RCT [33]. It was estimated that

approximately 21% of studies were published in the field of HCI. As the research topic

was broadened, a lower frequency of using RCTs was found. Moreover, these RCTs

accounted for only a negligible portion. Nevertheless, it should be noted that the num-
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ber of these studies has been slightly increasing in the past five years. Additionally,

many studies on HCI research methodologies clearly show the importance of adopting

an RCT design [60, 61, 127, 34, 128, 33].

On the other hand, RCT design has limitations [129, 128, 130]. For example, con-

ducting an RCT is very costly and resource intensive. Moreover, even when using

an RCT in which all factors that may affect human behavior are controlled, the clear

identification of the mechanism behind the target human behavior is not always guar-

anteed. Some HCI scholars contended that focusing on identifying how and why the

target population uses the system is as important as examining the effectiveness of the

system [129, 48]. They suggest that qualitative methods, including focus-group inter-

views and open-ended question surveys, have been frequently chosen to answer the

hows and whys questions above [129, 48]. Thus, some of the limitations of an RCT

can be properly addressed if researchers examine the dynamic aspects that affect the

effectiveness of the system by incorporating qualitative studies. There are also several

possible ways to compensate the weaknesses of RCTs. They include, but are not lim-

ited to, proper sampling of the target population, appropriate control groups (e.g., al-

ternative intervention group instead of a waitlist control group), sensitive and objective

outcome measures (e.g., physiological measures, big data), and evaluation for social

validity and fidelity of intervention. The RCT study should cover an adequate amount

of time to elicit human behavior change and should be retested at least 66 days [131]

to check the continuity of the modified behaviors.

While an RCT can answer whether a specific, complete system engenders relevant

changes in targeted behavior, it often reveals a minimal amount about why the sys-

tem is or is not effective. Furthermore, a large-size RCT may not be suitable for the

evaluation of technologies at early stages of development. According to [129], under-

standing user experience with the system and the underlying mechanism of a system’s

success or failure is exactly what HCI researchers should achieve to improve the de-

sign technologies. Beyond efficacy evaluation via RCT, HCI researchers should also

consider performing either quasi-experimental or case studies with a focus of how and

why the given system is being used from the user experience point of view. HCI re-

searchers can define and even tailor outcome measures to the intervention strategies
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that a system employs. For example, researchers conducted an RCT with 77 partici-

pants over 12 weeks to evaluate a mobile and wearable system for promoting physical

activity [132]. The researchers collected self-reported data via the International Physi-

cal Activity Questionnaire (IPAQ), accelerometer data, and data on changes in physical

state (e.g., weight, body fat).

A field deployment study of the TimeAware that examines the effects of framing

an individual’s productivity [133] could be a notable example of how HCI research

adequately incorporates RCT method into the evaluation. A total 24 participants were

assigned to two different conditions (positive framing and negative framing) for an

eight-week study, composed of a two-week baseline period, a four-week intervention

period, and a two-week withdrawal period. Quantitative measures extracted from us-

age logs and qualitative findings from pre- and post-questionnaires addressed the re-

searchers initial questions about how the framing strategy affects personal productivity.

In addition, an evaluation study on an adaptive goal setting system for stress reduction

recruited 65 participants [38] to examine how the system affect behavior change in the

wild. Participants were randomly assigned to three different conditions and participated

in the trial for a month. Since there is no universal measure for stress, the researchers

combined multiple measures, including the Perceived Stress Scale (PSS), Depression,

Anxiety, Stress Scale (DASS), and Cohen-Huberman Inventory of Physical Symptoms

(CHIPS). After the test, perceptions of system usability were collected.

Although the above study examples employed a similar evaluation format, there

remains no absolutely established standard evaluation technique and measure for be-

havior change technologies in the HCI field. HCI researchers should be able to tailor

evaluation procedures to gain a deep understanding of how and why a system is em-

ployed by its target users particularly in the early stage of intervention technology

development. At the same time, it is also important to consider an RCT experiment

to show the effectiveness of an intervention technology, which contributes to accu-

mulating evidence-based design guidelines for building effective positive computing

systems.
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5. Well-being Care System for College Students

Based on research opportunities and design considerations that we discussed in the

previous section, we introduce detailed scenarios of the use of our mobile system and

engagement in the context of positive and persuasive computing.

Scenario-based design is a method that focuses on describing the use of an infor-

mation technology system in the development process [2]. It describes how people

will use a system to accomplish work tasks and other activities through a sequence

of actions and events, making envisioned possibilities more concrete. It provides re-

searchers and practitioners preliminary yet useful insights on not only the opportunities

and challenges of the system use, but also on the design work based on defining system

operations (i.e., functional specifications).

Our target populations are college students. Earlier studies on tracking students’

happiness and well-being in academia showed that many of them struggle with men-

tal health issues [134]. For example, an annual survey by the University of California,

Los Angeles, Higher Education Research Institute found that college freshmen reported

feeling more stress and low “emotional well-being” but are increasingly spending more

time surfing the web [3]. A report, based on a survey of over 1,000 first- and second-

year university students, revealed that 82% of students at UK universities suffered from

stress and anxiety and 45% experienced depression [4]. A study at the University of

California, Berkeley [135], found that 47% of graduate students suffered from depres-

sion where the assessment factors included career prospects, overall health, living con-

dition, academic engagement, sleep, and others.

A considerable amount of research has shown that stress, time management, physi-

cal activity, productivity, life satisfaction, and other factors are correlated [5, 6]. These

are all primary elements handled by our system. In this paper, our scenarios specifically

focus on student well-being in school life including (1) lowering stress, (2) encourag-

ing physical activities, and (3) increasing productivity through the use of our proposed

system of positive, persuasive computing. Figure 5 presents four scenarios of positive,

persuasive computing for college students.

Scenario A relates to physical activity and stress. It describes a route recommenda-
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Figure 5: Four scenarios of positive, persuasive computing

tion generated by the smartphone. We assume that Mary’s schedule was already added

to the smartphone database (user feedback: schedule). As one of the goals that Mary

has set is increasing her physical activity (user feedback: goal setting), the recom-

mendation is generated based on the remaining time for the class and Mary’s current

location (behavioral markers). The amount of time that will take from a recommended

route should be less than the remaining time (context-aware interruptibility). More-
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over, a summary page of the route, which includes the number of other users who

employed the route and their satisfaction with it, can be offered together (modality and

interface design of interruption). This may increase Mary’s motivation of accepting

the recommendation. A “heart item” conferred as a bonus point while following the

route is likely to make her feel rewarded and increase engagement (design method-

ology: gamification). We expect that this may increase Mary’s physical activity and

lower stress, which may lead to increased productivity during the lecture.

Scenario B relates to productivity and stress. The smartphone knows that Mary is

at the library. If Mary does not use the smartphone, it is reasonable to assume that she

is studying (behavioral markers). After two hours of continuous study, the smartphone

recommends that she take a short break (context-aware interruption). A short break

is likely to refresh her mind and increase her study productivity. The next scenario

considers the case in which Mary resumes use of the smartphone. As she finds the

course material difficult and becomes stressed, she takes a photograph and posts it on

Instagram with hashtags that mirror her current emotional state (e.g., #gettingstressed).

Here, the smartphone can infer the correlation between her location, posted image, and

stress level (inferred behavioral markers), which will be used to understand contextual

information that is not only specific to Mary but also to potentially other users in the

future.

Scenario C relates to semi-automated tracking (user feedback), which combines

both manual and automated data collection methods [136]. Automated data collec-

tion with full reliability is difficult to guarantee, and thus, the smartphone periodi-

cally generates a notification consisting of simple, easy-to-understand questions and

easy-to-fulfill options (modality and interface design of interruption). Through semi-

automated tracking, we can confirm various types of current user statuses, including

location, activity/action, stress level, etc. (user feedback: confirmation). Through this

mechanism, the system can correct any incorrect information and better learn about the

user and environment.

Scenario D relates to a user’s daily reflection and goal setting (user preference,

feedback, and design methodology). The system offers a summary of various aspects

of smartphone use, including type, length of the apps used, list of the places visited,
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time remaining at each visited place, daily calorie consumption (number of steps, time

for walking, etc.), and others. The summary page should allow Mary to easily reflect

on her smartphone use, physical activity, stress, and productivity in various time frames

such as daily, weekly, and monthly (design methodology: interface design) [105, 137].

It should allow Mary to easily set her new goals based on the summary results, which

are new action items that will be considered by the system when generating interrup-

tions. It can be also combined with a social component by providing information on

how other people (including their friends) behave, how many points other people have

gained, what the popular “de-stress” places are, etc. We expect that this social compo-

nent and gamification (design methodology) will intrinsically or extrinsically motivate

users to engage with the system and support their retention [138].

Overall, these scenarios show how the key components of persuasive, positive com-

puting can be articulated through technical, social, and HCI lenses. They help to make

design activities more accessible and give direct, clear insights on system development

to researchers, designers, and practitioners.

6. Research Directions

6.1. Evidence-based Design of Positive Computing Systems

Driven by the importance of behavior change and the challenge of achieving it,

HCI scholars have explored the opportunity of computational interventions to promote

positive behavior [139]. The advent of ubiquitous sensing capabilities and context-

aware platforms has allowed people to pervasively log various aspects of their lives

resulting in self-discovery, to be supported by persistent and unobtrusive feedback as

a form of ambient displays, to interact with an intelligent, relational, and persuasive

agent, and to leverage social reinforcements.

In this article, we suggest that researchers build positive computing systems by

carefully following the guidelines for designing evidence-based persuasive systems,

which are established based on behavior principles and systematic evaluations. Sys-

tems design may contain various elements, ranging from personal factors (i.e., per-

ceived susceptibility, perceived benefit, self-efficacy, incentives, social pressure, per-
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sonality, learning history, etc.) to environmental factors (e.g., settings, people, system,

etc.), grounded by a health belief model, social cognitive theory, theory of reasoned

action, behavioral theory, etc. Through quantitative (e.g., surveys) or ethnographic

studies (e.g., one-to-one, focus-group interviews, observations), these factors can be

summarized and articulated, and be applied to the design of positive computing sys-

tems. Once the system is developed, through a series of user studies with varying con-

ditions (e.g., length, user types, etc.), traditional approaches (e.g., RCT) in the context

of HCI research can be employed to measure the effect of a positive computing system.

In the field of social computing, to make specific claims about design choices (e.g., en-

couraging contribution and commitment), researchers attempted to find experimental

evidence based on relevant theories of motivation and human behavior in social sci-

ence [140]. Likewise, through iterative testing, both short and long-term effect should

be verified, and new design implications (or evidence-bsed design guidelines) identi-

fied from the user studies should be summarized and used for design improvement and

scenario development.

6.2. Platform Design of Positive Computing System

As reviewed in Section 4.2, handling high-rate sensor data and supporting extensi-

bility are crucial for a general-purposed platform. OpenDataKIT [71], AWARE [72],

and mCerebrum [73] all support high-rate sensor data handling and extensibility. In

a practical system aspect, a general-purpose platform further requires considerations

on efficient data storage management, power usage, network latency, and system ro-

bustness across wearables, phones, and the back-end cloud. For example, selective

sampling based on needs (including power-aware sensing) and applications, cloud off-

loading [73] can improve the overall system lifetime.

Differential privacy management is another sound direction for platform design.

Recently, Saleheen et al. [141] suggested the importance of differential privacy, which

provides anonymity of any user from a multi-user statistical database, especially for

physiological data. It is noteworthy that personal activities can be easily inferred by

analyzing body-worn sensors (e.g., respiration (RIP), electrocardiogram (ECG), and

accelerometer). These include conversation episodes [142] from respiration data, stress
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level [143, 41] from ECG data, smoking from respiration and wrist-worn sensors [144,

145, 146], and cocaine use from ECG data [147].

Furthermore, while conducting a large scale experiment, a general-purpose plat-

form may support a component of real-time participant monitoring, which guarantees

whether all necessary data from users are gathered correctly and timely. It notifies

the users (and optionally, the platform operator) if they mistakenly disable sensors or

wireless communication medium. This capability will significantly relieve monitoring

costs and user’s manual endeavors. Moreover, it will maintain the safety and validity

of the experimental data.

6.3. Behavioral Marker Detection

Prior studies on behavioral marker have predominantly focused on understanding

manifestations of various well-being problems and discovering novel markers. The key

concern in these approaches is the lack of generalizability and scalability. These issues

are critical because the algorithms must be deployed to a group of heterogeneous indi-

viduals in a scalable way. Simple direct behavioral markers (e.g., detecting problematic

physical activities, such as a lack of exercise and aggressive driving) are well defined,

and it is relatively easy to design robust detection methods using machine learning. De-

spite existing diagnostic knowledge bases such as DSM-5 [83], however, in many cases

there is a lack of our prior knowledge of detailed manifestations of well-being prob-

lems. This lack warrants using certain approaches for detecting inferred behavioral

markers. Manifestation of well-being problems varies widely across individuals and

groups. Even temporal behavioral changes may exist (e.g., due to major life events).

Referring to diagnostic knowledge bases as in Wang et al. [84] may help us to narrow

down the search space in the plethora of sensor data.

Prior studies lacked systematic considerations of generalizability and scalability be-

cause they were mostly developed and validated with limited datasets. Large-scale data

collection would easily solve this limitation; however, it is very challenging and expen-

sive. Alternative approaches would include employing user-feedback-based learning

methods, such as reinforcement learning [148] and interactive machine learning [149].

While traditional learning models separate model training and model usage, active
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learning continually updates the model by adaptively asking users to label data items,

whereby probing decisions can be made based on various criteria (e.g., measuring

the informativeness of unlabeled data points [150] and estimating the value of ask-

ing users [104]). In general, this kind of learning can be extended to so called life-long

learning, where training is ongoing over a prolonged period [104].

It is interesting to note that this kind of active learning requires some level of user

interaction. In the case of positive computing, machine learning is applied to everyday

well-being problem. It is very important to consider the fact that regular people have

limited skills for engagement. For example, it is almost impossible for a lay person to

be directly involved in an optimization process of machine learning models. We can

thus consider the principle of interactive machine learning [149], which is intended

to significantly reduce the need for supervision by machine learning experts. This

can be achieved by designing user interfaces to help end users to interactively explore

the model space and provide intuitive feedback to drive the machine learning system

to intended behaviors. Bellotti and Edwards [151], for example, claimed that such

intelligent systems should support intelligibility features that “must be able to represent

to their users what they know, how they know it, and what they are doing about it.” For

example, Lim and Dey [152] designed a toolkit to support intelligibility in context-

aware applications. Thus, positive computing systems should support intelligibility

in their core learning algorithms, including feedback-based personalization and model

optimization.

6.4. Opportune Moment Detection

Prior studies have focused on context recognition and user feedback to achieve op-

portune moment detection. One of the major tasks in context recognition is to achieve

high granularity in order to ensure that the interruptible context is detected. However,

achieving this objective using the sensors in mobile, wearable, and IoT devices is chal-

lenging, especially since variations always exist among multiple users, and sensors do

not always provide accurate results in required granularity. Inaccurate context recog-

nition may result in inaccurate timing of the interruption, which in turn could result in

abandoning the program. To compensate for this issue, the most widely used approach
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is to utilize user feedback. Note that explicit feedback yields promising data about the

user’s reaction to the interruption; however, repeatedly asking for feedback may cause

disruption and irritation. Implicit feedback, on the other hand, minimizes disruption

but might lead to misunderstanding of the user’s reaction. One promising research di-

rection is to incorporate user feedback with machine learning to continuously adapt to

user’s preferences, conditions and environment as in behavioral marker detection.

Another research direction is to proactively seek for opportune moments by asking

people to make micro-spare time. For example, Kang et al. [153] defined micro spare

time as tiny fragments of time with low cognitive loads that frequently occur in our

daily lives, such as waiting for an elevator, walking to a different building, waiting for

public transportation, and so on. We can automatically identify various types of micro

spare time for intervention delivery using machine learning, as prior studies did for

learning and parenting purposes [154, 153].

6.5. Device and Modality Selection

As discussed earlier, the problem of device and modality selection is to address the

following questions: For a given intervention content (instruction and visual aids), (1)

how should we render the content for a given set of devices and their modalities?, and

(2) to this end, how should we consider device availability, attention performance, user

preference, and acceptability constraints?

One of the major research directions is to understand availability and acceptability

in multi-device environments. Users carry mobile and wearable devices, and their

usage contexts are very diverse. Analyzing mobility of users and device usage patterns

under various circumstances will help elucidate the availability and acceptability of

devices. In the case of wearable devices, we can perform a log data analysis to find

the unique patterns of an individual’s wearing behaviors, as in the work of Jeong et

al. [112]. Acceptability of devices and their modalities could be inferred by analyzing

interaction log data. Content delivery would also consider social acceptability, because

it may disturb other people in the shared spaces. While mobile and wearable devices

are primarily for personal use, IoT devices are often installed in the shared spaces, as

in the smart home/office environments. In this case, we may also consider dealing with
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conflicts particularly when a device is shared by multiple people [155].

Another direction is to learn user preferences of devices and modalities. What

remains challenging is the fact that user preferences are diverse and context dependent.

We can address the user diversity by building personalized models and the context

dependency by incorporating context-awareness features. However, the problem of

such approaches is lack of available user data (or user feedback). In addition, users

may show bias such that every sample should not be equally treated. Among various

methods of incrementally learning user preferences, we can use reinforcement learning

since it considers heterogeneous rewards. In this case, however, defining a user’s state

and actions would be quite challenging [148].

6.6. Evaluation of Positive Computing Systems

As an agency to change human behaviors, scholars have studied how the use of

mobile, wearable, and IoT devices, which are highly accessible, easy to carry, location-

free, and cost-effective, supports individuals to overcome psychological barriers to be-

havior change. Thus, in the context of positive computing, it is equally important to

demonstrate the reliability and validity of positive computing systems and their im-

pact on people via a scientifically validated method. American Psychiatric Association

(APA)’s mental health app evaluation model clearly states that evidence (i.e., effective-

ness) is the key factor for mental health outcomes, besides safety/privacy, ease of use,

and interoperability [156].

In the field of psychotherapy, more than three decades have passed since the need

for RCT was brought up in early 90’s [157]. Thanks to the accumulation of RCT re-

sults, evidence-based treatments for many mental disorders became available to the

public (e.g., [158]), and people have better chance to get access to the best practices

to resolve their own psychological issues. The same logic applies to the development

of computational interventions and applications to promote positive behavior. In order

to distribute them to the public, empirical evidences via RCT studies should be ac-

companied. Similar to the field of psychotherapy, long-term accumulation of objective

findings via RCT studies would be able to guide which program and device a person

should choose depending on their issues or problems. As pointed out earlier, additional
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efforts should be made to compensate the weaknesses of RCT, including sensitive out-

come measures, appropriate sampling and study duration, fidelity and social validity,

etc. Over the past few years, it has been observed that HCI research has adopted RCT

for measuring the effectiveness of their systems and products developed [60, 33, 61]

and is expected that the application of RCT combined with HCI research will be ex-

panded to many domains.

Beyond evaluating effectiveness of positive computing systems on behavior change

using RCT, we may need to advance evaluation procedures to gain a deep understand-

ing of how and why the system is used by its target users in order to identify further

design opportunities and challenges. To do this, we could tailor measures to gauge per-

ceptions and thoughts of individuals by adapting empirically validated instruments or

inventories. For the long-term effect of the positive computing system use, researchers

should continue to see whether the users still exhibit the changed behaviors even after

the experiments, and regardless of the results, socio-technical and design opportuni-

ties/challenges for the effect should be articulated. This is why the evidence-based

design of positive computing systems needs cross-disciplinary research.

6.7. Concerns and Negative Aspects

When designing novel positive computing systems, we suggest researchers and

practitioners consider possible concerns and negative aspects, such as technology de-

pendence, abandonment, side effects, privacy, and ethical issues.

First of all, positive computing services often contain various reinforcement, gam-

ification, and social engagement components (e.g., badges, points, and social shar-

ing), which may have inducing and reinforcing features that promote addictive tenden-

cies [91]. Some users may focus too much on such mechanisms without concerning

about their behavioral changes (e.g., by cheating achievements). Thus, researchers

and practitioners should consider addressing possible negative aspects of such compo-

nents. For example, they can set reasonable limits on daily achievements and employ

anti-cheating and reputation mechanisms.

Prior studies investigated various reasons for the abandonment of self-tracking

technologies. We expect that users naturally abandon technologies after goal achieve-
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ments. However, premature technology abandonment may happen due to the cost of

data collection and management, discomfort with information and data accuracy con-

cerns [159]. When developing intelligent positive computing systems with mobile and

wearable technologies, designers should carefully address such concerns as well as

general usability and user experience issues [160].

Sometimes positive computing services may result in unexpected negative conse-

quences. For example, Facebook was originally designed to fulfill the basic human

needs for social connection, but recent studies revealed that it may negatively affect

human well-being and life satisfaction [161]. Although it is challenging, researchers

and practitioners should carefully investigate possible negative ramifications of positive

computing systems on well-being and health.

Privacy issues must be carefully considered in the system design, since systems

could collect every single detail about individuals. User data handling must be care-

fully performed, and minimal data should be collected and utilized. For privacy preser-

vation, the mobile platform may consider implementing localized data processing such

that private data do not leave a user’s mobile device, or at least unlinkable data are only

transferred to the mobile cloud. Furthermore, system designers may adopt privacy pre-

serving data mining techniques; e.g., preserving k-anonymity in location data sharing

to avoid attackers from reconstructing invasive location information.

Finally, several ethical issues should be well-reflected as Fogg discussed [139].

Positive computing services can possibly manipulate individuals’ behaviors, and sys-

tem designers should implement such manipulative features solely for promoting pos-

itive behaviors. Any kinds of unethical use should be avoided; e.g., embedding an

implicit persuasion for product sales. Another ethical issue to consider is account-

ability, because stakeholders and software agents have responsibilities for computing

services and their (intended and unintended) outcomes. As discussed in Bellotti and

Edwards’ work on context-aware systems design [151], positive computing systems

design should consider supporting the accountability of interaction and intelligibility

of various context-aware features.
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7. Conclusion

We proposed a conceptual framework for intelligent positive computing systems re-

search. The core components include design methodologies, mobile platform design,

behavior marker detection, opportune moment detection, device and modality selec-

tion, and evaluation methodologies. Given that intelligent positive computing spans

a wide range of disciplines, this work provided a tutorial about each component and

suggested practical guidelines for system design, development, and evaluation. We

demonstrated the conceptual framework by proposing and reviewing several practical

service scenarios of addressing college students’ well-being problems. Research di-

rections on the core components of positive computing systems research were then

illustrated, followed by our brief discussion about concerns and challenges such as

technology dependence, abandonment, side effects, privacy, and ethical issues.

As new tools for enabling new directions for positive computing, mobile, wear-

able, and IoT technologies will greatly change the current landscape of well-being and

health-care services. We critically synthesized existing literature in diverse domains

and provided holistic perspectives on intelligent positive computing systems research.

Our work lays foundations for active collaboration among researchers in diverse do-

mains to design, develop, and evaluate novel intelligent positive computing systems.
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